
JavaScript

Stephen P Levitt

School of Electrical and Information Engineering
University of the Witwatersrand



Outline

1 Functions Recap

2 Closures
Practical Examples of Closures

3 Asynchronous Programming
Callbacks
Problems with Callbacks
Promises

1 / 9



Functions as Values

Functions are first-class citizens (can be easily passed as arguments to other functions;
can be returned from functions; can be assigned to variables or stored in data
structures)
// illustrating a function *declaration*
function aFunction() {

console.log("in a function");
};

aFunction(); // invoking the function

Functions Recap 2 / 9



Function Declaration Hoisting

foo()

function foo () {
let a = 2
console.log(a)

}

Functions Recap 3 / 9



Function Expressions

// illustrating a function expression
const f = function aFunction () {

console.log('in a function')
}

f() // invoking the function

Functions Recap 4 / 9



Anonymous Function Expressions

// function expressions can be anonymous
const f2 = function () {

console.log('in a function')
}

f2() // invoking the function

Functions Recap 5 / 9



Immediately Invokable Function Expressions - IIFE

// function is only ever called once
(function anotherFunction () {

console.log('in a function')
})()
// // function expression is invoked immediately by trailing ()

anotherFunction() // error, aFunction not defined

Functions Recap 6 / 9



“ Closure is when a function can remember and access its lexical scope even
when it’s invoked outside its lexical scope.”— Kyle Simpson in You Don’t Know JS

“ A closure is the combination of a function and the lexical environment
within which that function was declared.”

Closures 7 / 9



How are closures used in practice?

For emulating private data leading to the module pattern
For use with browser callbacks

Practical Examples of Closures 8 / 9


	Functions Recap
	Closures
	Practical Examples of Closures

	Asynchronous Programming
	Callbacks
	Problems with Callbacks
	Promises




