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On the Evolution of Lehman’s Laws

Michael W. Godfrey and Daniel M. German

SUMMARY

In this brief paper, we honour the contributions of the late Prof. Manny Lehman to the study of software
evolution. We do so by means of a kind of evolutionary case study: First, we discuss his background in
engineering and explore how this helped to shape his views on software systems and their development;
next, we discuss the laws of software evolution that he postulated based on his industrial experiences; and
finally, we examine how the nature of software systems and their development are undergoing radical change,
and we consider what this means for future evolutionary studies of software.
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1. LEHMAN’S INTELLECTUAL JOURNEY

Meir “Manny” Lehman did not follow a traditional career path for an academic. His father died
when he was young, and Lehman had to enter the workforce to help support his family instead
of attending university.∗ He got his first job in 1941 “performing maintenance on” (i.e., repairing)
civilian radios; in England at the height of the World War II, this was a job of real importance. For the
most part, his work involved replacing the components that the “tester” (or “debugger”, in software
engineering parlance) had determined to be problematic. He found the work repetitive and dull; he
decided that he really wanted to be a tester. One day, his foreman called in sick and Lehman was
allowed to do testing, but when the foreman returned, Lehman was told to go back to maintenance.
When Lehman protested that he thought he had been promoted, the foreman replied “Well, you’re
not paid to think” [9]. Lehman would later dedicate a large portion of his life to demonstrate that
those who do “maintenance” of software should be paid to think too.

Like many other pioneers of computer science, Lehman lived the computer revolution from its
inception; his early work was dedicated to building some of the first modern computers, and by
the end of his life he was witnessing the ubiquity of mobile computing. It is likely that he would
have spent his life working on hardware, had it not been for the few years he spent at IBM between
1964 and 1972. IBM had originally hired him to help build physical computers, but in 1968, in a
radical change of direction, he was asked to investigate programming practices within the company.
This project took him to study the development of the landmark operating system IBM S/360 and its
successor, IBM S/370. Lehman discovered that programmers were becoming increasingly interested
in assessing their productivity, which they measured in terms of daily SLOCs and passing unit-tests.
He noticed that productivity was indeed increasing according to these measures, but at the same
time the developers appeared to be losing sight of the overall product. In his words, “the gross
productivity for the project as a whole, and particularly the gross productivity as measured over

∗Lehman would later attend Imperial College London, where he received a PhD in 1957.
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the lifetime of the software product had probably gone down” [9]. It was during this period that
he developed a close friendship with fellow IBM employee Laszlo Belady. Together they would
challenge the prevailing models and assumptions of software maintenance processes, and champion
the study of software evolution as a field in its own right.

In 1972, Lehman left IBM to join Imperial College London, where he would continue his work in
software engineering research.† While he did not consider himself a programmer, his work at IBM
had allowed him to study and understand programmers and their products better than most. He had
witnessed first-hand the challenges of producing industrial programs for a real-world environment.
And, most importantly, he noticed that the processes involved in developing and maintaining
software appeared to form a kind of feedback system, where the environment provided a signal
that had profound impact upon the continued evolution of the system.

Lehman’s engineering-influenced views on software systems and their development were in stark
contrast to some other well known computer scientists of the time, such as Edsger Dijkstra. For
Dijkstra, a program was essentially a passive, mathematical entity that should be derived, iteratively,
from a formal statement of what it was supposed to do. In this model, the software developer starts
with a precise specification of the desired functionality, and then implements a series of formal
“step-wise” refinements, gradually making it more concrete, and ultimately executable; Dijkstra thus
championed the view that teaching programming should emphasize creating a correct specification
first, and then progressively transforming it through correctness-preserving transformations it into
a program that satisfies the specification [4]. While Lehman recognized the value of Dijkstra’s
position, at the same time he felt that it was an impractical model for the problem space of
industrial software and for the style of development he had observed at IBM. Lehman postulated
that programs could be divided into two main categories: S-type programs, which are derived from
a rigorous specification that can be stated up-front, and can be proven correct if required; and E-type
(evolutionary) programs, whose requirements are strongly affected by their environment and must
be adaptable to changing needs [8]. In his view, E-type systems are those that are embedded in the
real world, implicitly suggesting that S-type programs were less common — and thus less important
— outside of the research world.

2. LEHMAN’S LAWS OF EVOLUTION

Lehman’s best known work concerns his laws of software evolution, which he devised and refined
with several collaborators — most notably, Laszlo Belady — over many years. In Lehman’s view,
“The moment you install that program, the environment changes.” Hence, a program that is expected
to operate in the real world cannot be fully specified for two reasons: it is impossible to anticipate
all of the complexities of the real world environment in which it will run; and, equally importantly,
the program will affect the environment the moment it starts being used. As time passes, the
environment in which the software system is embedded will inevitably evolve, often in unexpected
directions; the environment of a program — including its users — thus becomes input to a feedback
loop that drives further evolution. A program might, at some point, perfectly satisfy the requirements
of its users, but as its environment changes, the program will have to be explicitly adapted to
continue doing so. In the words of Lehman, “Evolution is an essential property of real-world
software” and “As your needs change, your criteria for satisfaction change”.

Lehman observed that successfully evolving an existing software system was a surprisingly
difficult task. He summarized his observations about E-type software systems in what we today
call Lehman’s Laws of Software Evolution (adapted from [10, 3, 5]):‡

L1) Continuing change — A software software will become progressively less satisfying to its
users over time, unless it is continually adapted to meet new needs.

†Lehman was also instrumental in creating, at Imperial College, one the first academic programs in software engineering.
‡Herraiz et al. have performed a recent in-depth analysis of Lehman’s Laws and modern evidence [7].
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L2) Increasing complexity — A software system will become progressively more complex over
time, unless explicit work is done to reduce its complexity.

L3) Self-regulation — The process of software evolution is self regulating, with close to normal
distribution of the product and process artifacts that are produced.

L4) Conservation of organizational stability — The average effective global activity rate on an
evolving software system does not change over time; that is, the amount of work that goes into
each release is about the same.

L5) Conservation of familiarity — The amount of new content in each successive release of a
software system tends to stay constant or decrease over time.

L6) Continuing growth — The amount of functionality in a software system will increase over time,
in order to please its users.

L7) Declining quality — A software system will be perceived as declining in quality over time,
unless its design is carefully maintained and adapted to new operational constraints.

L8) Feedback System — Successfully evolving a software system requires recognition that the
development process is a multi-loop, multi-agent, multi-level feedback system; thus, for
example, as a software system ages, it tends to become increasingly difficult to change due
to the complexity of both the artifacts as well as the processes involved in effecting change.
This law also implicitly recognizes the role of user feedback in providing impetus for future
evolution.

While L8 (Feedback system) was the last to be formulated, arguably it should have been the
first to be stated, as its themes pervade all of the others. As discussed above, Lehman based his
observations on the notion that once a real-world software system has been deployed, its continued
development creates a set of complex feedback loops whose effects must be considered carefully.
The feedback can come from many sources including users (who may press for new features), the
application domain (if changes in tax law require changes in the way a POS system calculates taxes),
the technical environment in which the system runs (if changes to the operating system require
changes to how some of the functionality is implemented), and the system itself (when defects are
identified and need to be fixed). Developers must be keenly aware that if their software system does
not respond positively to these pressures, then over time the system will be seen as increasingly less
appealing by its user base (L1: Continuing change).

L2 (Increasing complexity) and L7 (Declining quality) imply that the changes required to evolve
the system to respond to these pressures tend to make the system more complex and lower its quality,
as perceived by the various stakeholders. Additional effort will be required to manage this growth in
complexity and keep it under control, and development resources will have to be explicitly allocated
to achieve this.

According to L3 (Self regulation), over time any measurements of the system or its process will
follow a well defined trend, with ripples in either direction that follow a normal distribution. In a
way, L4 (Conservation of organizational stability), is a corollary of L3: over the life of a system, the
amount of work that goes into the evolution of a system remains fixed. Likewise, L6 (Continuing
growth) can be seen at least in part to be a corollary of L1, since change often means adding new
code. Finally, L5 (Conservation of familiarity) states that to properly evolve a system, the team
should do so in fixed increments, or it risks losing its understanding of the system.

Lehman’s Laws have sometimes been criticized for lacking a solid empirical foundation;
additionally, subsequent empirical studies have found important cases where the evidence does not
support some of the laws [11, 6]. Lehman and his co-authors later clarified that their use of the word
“law” should be interpreted within the domain of the social sciences, and therefore, the laws are not
expected to represent precise invariant relationships of measurable observations [3].

Despite these criticisms, the laws call attention to the difficulties of maintaining a deployed
software system. Lehman challenged the commonly held view that software maintenance was
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simply the process of fixing defects found in the field, and helped explain why maintenance was
becoming so costly, risky, and time consuming, and why well designed systems often evolved into
unmanageable beasts. He also popularized the view that software systems are not maintained in the
traditional mechanical sense of fixing worn out pieces [13], but rather their essential properties are
adapted and reshaped to meet changing expectations.

Lehman’s Laws not only help to explain the risks of the future evolution of a system, but can
also be seen as prescriptive advice. We know that the environment will put evolutionary pressures
on any deployed software system; if we cannot predict this pressure, we can at least prepare for
it. Consequently, it becomes more important to build a system that is amenable to change than to
build a system that perfectly satisfies the requirements at deployment time. And once the system is
deployed, we need to worry about managing and reducing the continuously growing complexity of
the system. As we have learned over and over again through the years, software design is not a task
that can be done entirely up-front, before coding starts; instead, it needs to be done in a continuously
and iteratively, and in response to changing needs.

3. SOME OBSERVATIONS ON MODERN SOFTWARE EVOLUTION AND LEHMAN’S
LAWS

As noted above, Lehman’s observations on software evolution — that he later deemed his “laws”
— were first developed during the 1960s and 1970s based on his experiences at IBM and the
development of large systems such as OS/360, and he continued to refine and add to them into the
1990s [12]. However, his direct experiences — and later, the data he examined from other industrial
projects — were mostly of large, systems-oriented applications written in tightly organized teams
using old school management styles, programming languages, and development tools. The software
world has changed a lot since then, and in the age of agile development, cloud-based services, and
powerful run-time environments with comprehensive infrastructures it is worth considering how the
technical ground has shifted and how this might affect his laws. With this in mind, we now discuss
some of the major recent trends of software systems and their development, and how Lehman’s
Laws may need to evolve to accommodate them [5].

First, we note that some recent studies cast new doubt on the likely truth of L3, L4, and L5
(for example, [6, 14]). Software development, and open source software development in particular,
seems now much more ad hoc in its approach to release planning. In earlier times, software systems
were developed in-house by relatively stable sets of engineers working to regular and well defined
schedules. Creating a major release of a software system was expensive, and required significant
planning and budgeting. By comparison, open source systems tend not to be driven by these kinds
of time and personnel pressures, and increasingly, industrial software development is echoing the
style of release planning. Releases are created when a project manager decides that it is worthwhile
to do so — such as when an important feature is available — rather aiming toward some largely
artificial deadline. Consequently, the regularity of releases as well as the number of development
artifacts created and features implemented per release tends to vary widely even within a single
system [6].

The studies that Lehman and his colleagues performed to support his arguments used the metrics
of the day — such as LOC, number of files touched, number of features implemented, etc. — to
measure a system’s growth and complexity. However, the evolution of the very nature of software
systems themselves require that we rethink how — or if — we should perform similar measurements
within a modern context. We now discuss some of these concerns.

3.1. The emergence of software architecture

When a large system is being developed for the first time, devising a workable software architecture
is the hardest and most important design task that must be done early on. As work proceeds and
understanding of the problem space improves, internal boundaries within the system begin to emerge
as developers form a communal high-level mental model of the design. As these boundaries mature,
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their interfaces begin to harden; if they are well conceived, these interfaces can hide much of the
complexity of the major components from each other. In time, some components may become more
loosely coupled from the system; for example, device drivers for the Linux kernel have become less
tightly coupled with the rest of the system as various simplified internal interfaces have emerged
together with a facility for loading kernel modules at run-time. Overall, this has reduced the amount
of knowledge about the rest of the kernel that device driver developers must understand, and so
greatly simplified the task of creating new device drivers. Of course, over time inflexible interfaces
may become a problem if they are poorly thought out, and significant effort may be required to
work around their flaws; Brooks would call this adding to the accidental complexity of the system
[2]. But well designed interfaces can greatly lessen the amount of knowledge that developers must
understand about other parts of the system.

However, the emergence of internal interfaces and subsystem boundaries means that the
complexity of a large software system is probably not best judged as a simple sum (or product)
of the size of the components; rather, a more nuanced view is needed that takes into account the
complexity of those details that must be understood to interact with the various subcomponents of
a software system. For example, device drivers now comprise more than 60% of the source code in
the Linux kernel source distribution; yet because drivers communicate with the rest of the system
via a relatively narrow interface, it is not clear that their internal complexity has much bearing on the
complexity of the rest of the system and vice versa [6]. Additionally, drivers are mostly independent
of each other yet they exist in large numbers and so inflate the naive model of the size of the kernel
source. Much of Lehman’s empirical models use absolute numbers (the size of the system as a
whole, the number and size of changes, etc.) to measure effort, complexity, and system size; we
lack smarter, more sensitive models that are better tuned to the internal design of software systems.

3.2. The de-monolithization of software systems

Until fairly recently, large software systems were often designed as monoliths; such a system had
to implement almost all of its own functionality with relatively limited help from the underlying
operating system and general purpose software libraries. The current era of software development is
a very different landscape: systems are embedded within an ecosphere of peer components including
libraries, frameworks, run-time environments, virtual machines, and services, which in turn may be
local, mobile, distributed, and location dependent [1]. Developing such a system is less about writing
source code than understanding available services, evaluating security concerns, investigating
distributed performance, and specifying deployment details. Thus, much of the complexity of
modern development does not show up in traditional software metrics: one must evaluate possible
components and services, configure their use, and deploy their systems within an appropriate run-
time environment. And so we have some thinking to do: empirical models of the size, complexity,
and development effort of software systems need to explicitly recognize that not every important
factor can be measured easily.

3.3. Open source development and agile processes

Modern software is developed in many ways, most of which do not resemble the old-school model
of Big Design Up Front with waterfall-like supporting processes. Increasingly, industrial software
development has been embracing the use of open source components, often contributing significant
resources and implementing core functionality for such projects. Industrial developers may also
take existing open source codebases, and create specializations suited to their particular needs,
which are then also released to the community. For example, the Android platform is based on
the Linux operating system, and both the Chrome and Safari web browsers make use of the WebKit
browser engine as a core component; this means that some developers who work at Google and
Apple create a significant amount of source code that is only indirectly related to their company’s
own proprietary products. One must therefore ask: How can we evaluate a developer’s contributions
to an industrial project when their primary efforts are only indirectly related to it? And how can
we measure characteristics of a product whose base includes a significant amount of source code
that has been adapted for use rather then developed from scratch? If we are to study topics such as
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project evolution and developer productivity, we need new empirical models that can account for
these new approaches to software development and reuse.

3.4. Emergent uses of software

Lehman’s eighth law (L8: Feedback system) recognized that software systems are embedded within
various environments that can and do provide feedback into new development. Software systems
are created by a changing development team within an evolving social and technical environment;
furthermore, when systems are delivered and deployed, the user community comprises another
environment whose reactions can influence future development. Lehman’s implicit advice is that
it is better to think of software and its development as a system in the engineering sense of the
term than as a passive mathematical theorem that can be manipulated formally to achieve desired
goals. While a software system is, of course, a mathematical entity in some sense, its evolution is
not simply a matter of manipulating it until it performs a set of desired functionality; rather, the
realities of software development processes owe much to pressures that lie outside of the formal
development artifacts.

It is a truism that the Internet has changed the world forever, acting as an enabling technology
for some phenomena and as a catalyst for others. The speed and volume of the feedback loop from
user to developer is much stronger than anyone could have foreseen in the 1960s. But perhaps
even more surprising is the number and variety of emergent uses some software systems have
exhibited. For example, the original design goal for virtual machine platforms such as VMware
and VirtualBox was simply to be able to run software written for multiple operating systems
on a single computer; however, these systems are now widely used for many other purposes,
including as generic deployment platforms, for malware research, and even for reproducibility
of scientific experiments that require specialized software setups. While Lehman’s eighth law
recognized the feedback loop from users back to developers to, for example, feed ideas for new
features, these fundamentally new uses of software systems would not have been possible without
the accompanying infrastructure of the internet; this represents a fundamental shift in the way that
software systems may evolve.

4. SUMMARY

Lehman’s Laws of Software Evolution were devised over a period of many years, and continue
to be influential in the study of how and why software systems change over time. Despite being
conceived mostly during an era when development practices were fairly rigid and tightly planned,
they continue to have meaning to us today in an era of rapid change, ad hoc development practices,
and wholesale reuse and adaption of third-party software assets. However, as new models of
software development emerge, we must reconsider some of the original assumptions, and seek to
devise new models that will continue to hold utility as we study software creation and evolution
in this new era. Since Lehman’s Laws concern a design space — that of software development —
perhaps it is appropriate that the laws themselves seem beholden to Lehman’s first law. That is, as
researchers we must seek to continually adapt Lehman’s Laws over time or they will be seen as
progressively less useful. This ongoing challenge is a key part of Manny Lehman’s legacy.
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