
50 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 5 / $ 3 1 . 0 0 © 2 0 1 5 I E E E

FOCUS: RELEASE ENGINEERING

Continuous
Delivery
Huge Benefits,
but Challenges Too

Lianping Chen, Paddy Power

// This article explains why Paddy Power adopted

continuous delivery (CD), describes the resulting

CD capability, and reports the huge benefits and

challenges involved. This information can help

practitioners plan their adoption of CD and help

researchers form their research agendas. //

CONTINUOUS DELIVERY (CD) is
a software engineering approach in
which teams keep producing valu-
able software in short cycles and
ensure that the software can be re-
liably released at any time. CD is
attracting increasing attention and
recognition.

CD advocates claim that it lets
organizations rapidly, efficiently,
and reliably bring service improve-
ments to market and eventually stay
a step ahead of the competition.1
This sounds great. However, imple-
menting CD can be challenging—

especially in the context of a large
enterprise’s existing development-
and-release en vironment.

Here, I explain how we adopted
CD at Paddy Power, a large book-
making company. I describe the
resulting CD capability and report
the huge benefits and challenges
involved. These experiences can
provide fellow practitioners with
insights for their adoption of CD,
and the identified challenges can
provide researchers with valuable
input for developing their research
agendas.

The Context
Paddy Power is a rapidly growing
company, with a turnover of ap-
proximately €6 billion and 4,000
employees. It offers its services in
regulated markets, through betting
shops, phones, and the Internet.

The company relies heavily on
an increasingly large number of cus-
tom software applications. These ap-
plications include websites, mobile
apps, trading and pricing systems,
live-betting-data distribution sys-
tems, and software used in the bet-
ting shops. We develop these appli-
cations using a range of technology
stacks, including Java, Ruby, PHP,
and .NET. To run these applications,
the company has an IT infrastruc-
ture consisting of thousands of serv-
ers in different locations.

These applications are developed
and maintained by the Technology
Department, which employs about
400 people. A software develop-
ment team’s size depends on the ap-
plication’s size and complexity. Our
teams range from two to 26 people;
most teams have four to eight people.

The release cycle for each applica-
tion also varies. Previously, each ap-
plication typically had fewer than six
releases a year. For each release cycle,
we gathered the requirements at the
cycle’s beginning. Engineers worked
on development for months. Exten-
sive testing and bug fixing occurred
toward the cycle’s end. Then, the de-
velopers handed the software over to
operations engineers for deploying
to production. The deployment in-
volved many manual activities.

This release model artificially
delayed features completed early in
the release cycle. The value these
features could generate was lost,
and early feedback on them wasn’t
available.

s2che.indd 50 2/4/15 6:35 PM

MARCH/APRIL 2015 | IEEE SOFTWARE 51

Many releases were a “scary”
experience because the release pro-
cess wasn’t often practiced and there
were many error-prone manual ac-
tivities. Priority 1 incidents caused
by manual-con� guration mistakes
weren’t uncommon. In addition, the
release activities weren’t ef� cient.
Just setting up the testing environ-
ment could take up to three weeks.

To improve the situation, Paddy
Power started an initiative to imple-
ment CD. The company established
a dedicated team of eight people,
which has been working on this for
more than two years.

The CD Pipeline
Because we needed to support many
diverse applications, we built a plat-
form that lets us create a CD pipe-
line for each application. Our team
operates and maintains this plat-
form. When an application develop-
ment team needs a new CD pipeline
for its application, we create one.

An application’s pipeline might
differ slightly from another applica-
tion’s pipeline, in terms of the num-
ber and type of stages, to best suit
that application. Figure 1 shows an
example pipeline.

Code Commit
The code commit stage provides im-
mediate initial feedback to develop-
ers on the code they check in. When
a developer checks in code to the
software-con� guration-management
repository, this stage triggers au-
tomatically. It compiles the source
code and executes unit tests.

When this stage encounters an er-
ror, the pipeline stops and noti� es the
developers. Developers � x the code,
get the changes peer reviewed, and
check in the code. This triggers the
code commit stage again and starts a

new execution of the pipeline. If ev-
erything goes well, the pipeline auto-
matically moves to the next stage.

Build
The build stage executes the unit
tests again to generate a code cov-
erage report, runs integration tests
and various static code analyses, and
builds the artifacts for release. It up-
loads the artifacts to the repository
that manages them for deployment or
distribution. All later pipeline stages
will run with this set of artifacts.

Before we moved to CD, the bi-
naries released to production might
differ from the tested binaries. This
was because we built the software
multiple times, each for a different
stage. Each time we built the soft-
ware, we ran the risk of introduc-
ing differences. We’ve seen the bugs
these differences cause. Fixing them
was frustrating because the software
worked for the developers and testers
but didn’t work in production. The
CD pipeline eliminated these bugs.

If anything goes wrong, the pipe-
line stops and noti� es the developers;
otherwise, it automatically moves to
the next stage.

Acceptance Test
The acceptance test stage mainly
ensures that the software meets all

speci� ed user requirements. The
pipeline creates the acceptance test
environment, a production-like envi-
ronment with the software deployed
to it. This involves provisioning the
servers, con� guring them (for ex-
ample, for network and security),
deploying the software to them, and
con� guring the software. The pipe-
line then runs the acceptance test
suite in this environment.

Previously, setting up this en-
vironment was a manual activity.
For one of the very complex appli-
cations, setup took two weeks of a
developer’s time. Even for a smaller
application, it took up to half a day.

For a new project, setup took
even longer. The developers needed
to request new machines from the
infrastructure team, request that the
Unix or Windows engineering team
con� gure the machines, request net-
work engineers to open connections
between the machines, and so on.
This could take a month.

With the CD pipeline, the devel-
opers don’t need to perform these
activities. The pipeline automatically
sets up the environment in a few
minutes.

Similar to the other stages, if any
errors arise, the pipeline stops and
noti� es the developers; otherwise, it
moves to the next stage.

Build

Increasing con�dence in production readiness

Code
commit

Performance
test

Acceptance
test

Manual
test

Production

Automatic promotion Manual promotion

FIGURE 1. An example continuous delivery (CD) pipeline. Promotion—advancing

the pipeline’s execution from one stage to another—can be automatic or manual. Our

con� dence in a build’s production readiness increases as the build passes through each

pipeline stage.

s2che.indd 51 2/4/15 6:35 PM

52 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: RELEASE ENGINEERING

Performance Test
The performance test stage gauges
how the code change will affect the
software’s performance. The pipeline
sets up the performance test environ-
ment, runs a suite of performance
tests in this environment, and feeds
the results into the tool that centrally
manages software quality.

Previously, owing to the consid-
erable effort of setting up a perfor-
mance test environment, perfor-
mance testing didn’t occur during
development. We performed it only
before the big release.

With the pipeline, performance
testing occurs for each code com-
mit that passed the previous stages.
This lets developers get immediate
feedback if the code change has de-
graded the software’s performance.
Diagnosing and � xing problems at
this time is much cheaper than doing
so before a big release.

Manual Test
Although our automated testing is
quite comprehensive, manual testing

is sometimes necessary (for
example, when the testers
perform exploratory test-
ing2 and the business users
perform user acceptance
testing).

Previously, the testers
had to set up a manual-
testing environment, which
they said was a headache.
There were many manual,
error- prone steps.

With CD, they no longer
need to worry about this.
The pipeline automatically
sets up the test environ-
ment and noti� es the tes-
ters with email containing
the information required
to access the deployed
application.

When the tests complete satisfac-
torily, the set of artifacts is promoted
from “potential release candidate”
to “release candidate.” At this point,
the software has passed all the qual-
ity checks and is ready to deploy to
production.

Production
Deployment into production takes
just the click of a button.

Previously, such deployment some-
times failed because of errors in the
deployment process and scripts. CD
has no manual deployment steps, and
the deployment process and scripts
have been tested many times in previ-
ous stages.

Bene� ts
 So far, we’ve moved 20 applications
to CD. They’re developed by one of
the largest software development
groups. Their main users are busi-
ness people in the company. All the
development teams have adopted an
agile approach called Kanban3 while
moving their applications to CD.

On these applications, CD has
produced the following six main
bene� ts (see Figure 2).

Accelerated Time to Market
The release frequency has increased
dramatically. Previously, an appli-
cation released once every one to
six months. Now, an application re-
leases once a week on average. Some
applications have released multiple
times a day when necessary.

The cycle time from a user story’s
conception to production has de-
creased from several months to two
to � ve days.

CD lets us deliver the business value
inherent in new software releases to
our customers more quickly. This ca-
pability helps the company stay a step
ahead of the competition, in today’s
competitive economic environment.

Building the Right Product
Frequent releases let the application
development teams obtain user feed-
back more quickly. This lets them
work on only the useful features. If
they � nd that a feature isn’t useful,
they spend no further effort on it. This
helps them build the right product.

Previously, teams might have
worked on features that weren’t use-
ful but didn’t discover that until af-
ter the next big release. By that time,
they had already spent months of ef-
fort on those features.

Improved Productivity and Ef� ciency
Productivity and ef� ciency have also
improved signi� cantly. For example,
developers used to spend 20 percent
of their time setting up and � xing
their test environments. Now, the
CD pipeline automatically sets up
the environments. Similarly, testers
used to spend considerable effort set-
ting up their test environments. Now,
they don’t need to do this, either.

Accelerated
time to market

Building the
right product

Improved
customer

satisfaction

Improved
productivity

and ef�ciency

Improved
product
quality

CD’s
bene�ts

Reliable
releases

FIGURE 2. CD’s bene� ts. Motivated by these

bene� ts, the company is increasing its investment in

CD.

s2che.indd 52 2/4/15 6:35 PM

 MARCH/APRIL 2015 | IEEE SOFTWARE 53

Operations engineers used to take
a few days’ effort to release an ap-
plication to production. Now, they
only need to click a button; the pipe-
line automatically releases the appli-
cation to production.

Furthermore, developers and op-
erations engineers used to spend
much effort on troubleshooting and
fixing issues caused by the old re-
lease practice. The CD pipeline elim-
inated these issues. The effort that
otherwise would have been spent fix-
ing these issues can be used for more
valuable activities.

Reliable Releases
The risks associated with a release have
significantly decreased, and the release
process has become more reliable.

As we mentioned before, with
CD, the deployment process and
scripts are tested repeatedly before
deployment to production. So, most
errors in the deployment process and
scripts have already been discovered.

With more frequent releases, the
number of code changes in each re-
lease decreases. This makes find-
ing and fixing any problems that do
occur easier, reducing the time in
which they have an impact.

Moreover, the CD pipeline can
automatically roll back a release if it
fails. This further reduces the risk of
a release failure.

The engineers commented that
they don’t feel the same level of
stress on the release day that they
did previously. That day becomes
just another normal day.

Improved Product Quality
Product quality has improved sig-
nificantly. The number of open bugs
for the applications has decreased by
more than 90 percent.

With CD, immediately after a
code commit, the whole code base

undergoes a series of tests. If the
tests find a problem, the developers
fix it before moving to another task.
This eliminates many bugs that oth-
erwise would have been open in the
bug-tracking system with the old re-
lease practice.

Previously, the bug-tracking sys-
tem recorded many open bugs. Ap-
proximately 30 percent of the work-
force was fixing bugs. Now, usually
nobody is working on customer-
found bugs. Bugs are so rare that the
teams no longer need a bug-tracking
system.

On the rare occasion that a bug
is discovered in production, it’s
added to the team’s Kanban board
and gets fixed and released in a few
days. Before, customers had to wait
for the next big release to get the
bug fix. The time frame was usu-
ally months.

In addition, priority 1 incidents
in production have decreased signifi-
cantly. This is because, apart from
the reasons we just listed, the CD
pipeline has eliminated the errors
that might result from manual con-
figurations and error-prone practices.

Improved Customer Satisfaction
Before we moved to CD, distrust
and tension existed between the us-
ers’ department and the software
development teams, owing to qual-
ity and release issues. The manag-
ers commented that the relationship
has improved enormously. Trust has
been established.

Challenges
Motivated by these huge benefits, the
company is increasing its investment
in CD. Expanding the adoption of
CD across the company and improv-
ing the CD platform are receiving
top priority. Nevertheless, imple-
menting CD involves considerable
challenges.

Organizational Challenges
The biggest challenge has been or-
ganizational. Release activities in-
volve many divisions of the com-
pany. Each has its own interests,

ways of working, and perceived ter-
ritories of control. Tension existed
between divisions due to competing
goals. For example, we needed root
access to the servers, and another
team controlled this permission. Ar-
riving at a solution involved much
consultation and negotiation over
six months.

To address the organizational
challenges, the leadership team re-
structured the organization to break
down barriers among teams and
promote a collaborative culture. The
situation has improved since.

Although literature on organiza-
tional change exists,4 little, if any, re-
search focuses on introducing CD to
an organization. Further research on
this topic—for example, understand-
ing the challenges in more depth and
developing strategies and practices
to tackle them more effectively—will
significantly help an organization’s
smooth adoption of CD.

Frequent releases let the
application development teams obtain

user feedback more quickly.

s2che.indd 53 2/4/15 6:35 PM

54 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: RELEASE ENGINEERING

Process Challenges
Many traditional processes hinder
CD. For example, a feature that’s
ready for release normally must go
through a change advisory board.5

This can delay the release for up to
four days. If a feature takes only a
few days from conception to being
ready for release, this four-day pe-
riod accounts for too much of the
feature’s total cycle time.

Research is needed to identify
these processes (covering areas of

business, software development, op-
erations, and so on) and develop and
verify alternatives that suit CD.

Technical Challenges
A robust, out-of-the-box, comprehen-
sive, and yet highly customizable solu-
tion for CD doesn’t exist yet. So, we
developed our own solution, which
was costly. Tools that � ll this gap will
save companies considerable resources.

When we’re building the CD plat-
form, we use many different tools

and technologies as building blocks.
Avoiding vendor lock-in is challeng-
ing. Work on developing widely ac-
cepted standards, de� ning open
APIs, and building an active plug-
in ecosystem will help alleviate the
challenge.

Dealing with applications that
aren’t amenable to CD (for exam-
ple, large, monolithic applications)
is also challenging. A huge number
of such applications exist in the in-
dustry. Research is needed on un-
derstanding their characteristics and
identifying and developing the best
strategies or practices to tackle them.

W e’d like to solve the
challenges we just de-
scribed through close

collaboration with researchers and
companies, so that more organiza-
tions can easily avail themselves of
CD’s bene� ts.

For a brief look at other research
related to CD, see the sidebar.

Acknowledgments
I thank my colleagues, Klaas-Jan Stol,
this article’s reviewers, and the editors
for their help and thoughtful comments.
The article represents only my own views
and doesn’t necessarily re� ect those of my
employer.

References
 1. J. Humble and D. Farley, Continuous De-

livery: Reliable Software Releases through
Build, Test, and Deployment Automation,
Addison-Wesley Professional, 2010.

 2. C. Kaner, J. Falk, and H.Q. Nguyen,
Testing Computer Software, 2nd ed., John
Wiley & Sons, 1999.

 3. D.J. Anderson, Kanban: Successful Evo-
lutionary Change for Your Technology
Business, Blue Hole Press, 2010.

 4. R. Todnem By, “Organisational Change
Management: A Critical Review,” J.
Change Management, vol. 5, no. 4, 2005,
pp. 369–380.

 5. A. Rob, Effective IT Service Management:
To ITIL and Beyond!, Springer, 2007.

RELATED WORK IN
CONTINUOUS DELIVERY
Gerry Claps and his colleagues studied the technical and social challenges of
adopting continuous delivery (CD).1 Helena Olsson and her colleagues explored
the barriers to transitioning from agile development to CD.2 However, none of
them covered the challenges of CD tooling development. I describe these chal-
lenges in the main article.

Mika Mäntylä and his colleagues performed a semisystematic literature
review of rapid release (including CD).3 They concluded that evidence of the
claimed advantages of rapid release is scarce. In the main article, I provide what
I believe is the � rst comprehensive evidence-based description of CD’s bene� ts
in the research literature.

References
 1. G.G. Claps, R. Berntsson Svensson, and A. Aurum, “On the Journey to Continuous Deploy-

ment: Technical and Social Challenges along the Way,” Information and Software Technology,
vol. 57, 2015, pp. 21–31.

 2. H.H. Olsson, H. Alahyari, and J. Bosch, “Climbing the ‘Stairway to Heaven’—a Multiple-
Case Study Exploring Barriers in the Transition from Agile Development towards Continuous
Deployment of Software,” Proc. 38th EUROMICRO Conf. Software Eng. and Advanced Applica-
tions (SEAA 12), 2012, pp. 392–399.

 3. M. Mäntylä et al., “On Rapid Releases and Software Testing: A Case Study and a Semi-
systematic Literature Review,” Empirical Software Eng., Oct. 2014, pp. 1–42

LIANPING CHEN is a senior software engineer at Paddy Power and a
part-time doctoral researcher at Lero—The Irish Software Engineering
Research Centre at the University of Limerick. His research interests
include software requirements and architecture, continuous delivery,
DevOps, and software product lines. Chen received an MS in software
engineering from Northwestern Polytechnical University. Contact him
at lchen@paddypower.com.

ABOUT THE AUTHOR

s2che.indd 54 2/4/15 6:35 PM

