
JavaScript Closures

Stephen P Levitt

School of Electrical and Information Engineering
University of the Witwatersrand



Outline

1 Functions Recap

2 Closures

1 / 9



Read the code and answer the following questions

1 const sayHello = function (name) {
2 let text = 'Hello ' + name
3 let say = function print () { console.log(text) }
4 return say
5 }
6
7 const greet = sayHello('Thabo')
8 greet()
9

10 // Output: Hello Thabo

Identify the local variables for sayHello
When do these variables go out of scope?
What is returned from sayHello? Use the correct term.
At what point is the code in the print function executed?
Explain the output.

Closures 2 / 9



“ Closure is when a function can remember and access its lexical scope even
when it’s invoked outside its lexical scope.”— Kyle Simpson in You Don’t Know JS

“ A closure is the combination of a function and the lexical environment
within which that function was declared.”

Closures 3 / 9



All variables in the outer function form part of the closure

function sayAlice () {
const sayAlert = function greeting () { console.log(alice) }
// Local variable is hoisted and ends up within closure
const alice = 'Hello Alice'
return sayAlert

}

sayAlice()() // immediately invoke the returned function expression

// Output: Hello Alice

Closures 4 / 9



Modifying variables within the closure

function say5 () {
let num = 5
const say = function () { console.log(num) }
num++
return say

}

say5()() // immediately invoke the returned function expression

// What is the output?

Closures 5 / 9



With each new call of the outer function a new closure is created

const namer = function (name) {
return function (obj) {

obj.name = name
console.log(obj)

}
}

let anObj = { groupNum: 12 }

const nameFrancis = namer('Francis')
const nameRyan = namer('Ryan')

nameFrancis(anObj) // name set to Francis
nameRyan(anObj) // name changed to Ryan

// What is the output?

Closures 6 / 9



Closures Share Variables

let gPrintNumber, gIncreaseNumber, gSetNumber // globals

function setupSomeGlobals () {
let num = 5
// Store references to functions through global variables
gPrintNumber = function () { console.log(num) }
gIncreaseNumber = function () { num++ }
gSetNumber = function (x) { num = x }

}

setupSomeGlobals()

gPrintNumber()
gIncreaseNumber()
gPrintNumber()
gSetNumber(44)
gPrintNumber()

Closures 7 / 9



Closures — Recap

Inner functions have closure over their lexical scope
All variables in the outer function form part of the closure
The scope closed over has the state resulting from the completion of the outer
function
With each new call of the outer function a new closure is created
All inner functions share access to the same variables

Closures 8 / 9



Give the output produced by the following code

function itemList () {
let items = []
let i = 0
while (i < 10) {

let item = function () {
console.log(i) // should show its number

}
items.push(item)
i++

}

return items
}

let list = itemList()
list[0]()
list[5]()

Closures 9 / 9


	Functions Recap
	Closures

