
ELECTRICAL AND INFORMATION ENGINEERING
University of the Witwatersrand, Johannesburg
Software Development III

Laboratory 2 — JavaScript and Node.js

In this lab, we will go over the fundamentals of the JavaScript language. We assume that
you are familiar with C++ and so we highlight some of the key differences with respect to
C++. A brief introduction to Node.js as a web server is also provided.

1 Install Node.js

In this course we will be using the LTS (Long Term Support) version of Node.js. Download
and install this version of Node.js for your operating system. You can accept the default
choices when running the installer.
Node.js is a JavaScript run-time environment which allows us to execute JavaScript code
outside of the browser. This is useful because although you presumably already have a
JavaScript compiler installed on your computer (via Chrome, Firefox, or another browser),
it is handy to be able to run JavaScript from within an IDE and make use of the IDE’s
auto-completion, debugging, and other supporting features.
Note, Node.js is typically run on a server for executing server-side scripts which generate
web pages. This will be discussed in more detail in Section 14.
Check that Node.js is installed correctly by typing the following in the command line:

node -v

From here on, we will simply refer to Node.js as Node.

2 Run Your First JavaScript Program

Make sure that you already have installed Visual Studio Code, as described in the first
laboratory.

Exercise 1

Before starting, note that you should create a separate JavaScript file for each of the exer-
cises given in this lab.
Now let’s create our first JavaScript program. Type the following in a new file and save it
as hello.js.

const message = 'Hello World!'
console.log(message)

1

https://nodejs.org/en/

Now let’s run the code. Press ctrl shift E to open VS Code’s Explorer pane, right-click on
the file and choose Open in Terminal. At the prompt, type:

node hello

and you should see “Hello World!” being printed. Notice that (unlike C++) we didn’t need
any main function to run our code. JavaScript, like most scripting languages, runs files
line-by-line from the top of the file.

3 JavaScript Syntax and Style

let sum = 0;

for (let i = 0; i < 9; i++) {
sum += 1;

}

console.log(sum);

if (sum % 2 == 0) console.log("Sum is even");
else console.log("Sum is odd");

Listing 1: JavaScript has a similar syntax to C++

Viewing Listing 1, we see that JavaScript’s syntax is very similar to C++’s. for-loops and
if-statements are written in an identical fashion. Curly braces define variable scope as we
are used to.
JavaScript is “relaxed” when interpreting syntax and so although the code that is given has
semi-colons it is entirely possible to exclude them as they are optional. Single quotes can
also be used for declaring string literals. In JavaScript '==' is the loose equality operator.
This can be difficult to use correctly, so the strict equality (===) and inequality (!==) op-
erators are generally preferred. Most of these stylistic decisions are minor so it is best to
just choose one approach and stick to it. In this course we will follow the conventions of
StandardJS, some of which are evident in Listing 2.

let sum = 0 // no semi-colons

for (let i = 0; i < 9; i++) {
sum += 1

}

console.log(sum)
// StandardJS warning produced: strict equality comparisons ('===') are preferred
if (sum % 2 == 0) console.log('Sum is even') // single quotes for strings
else console.log('Sum is odd')

Listing 2: JavaScript formatted according to StandardJS

2

https://dorey.github.io/JavaScript-Equality-Table/unified/
https://standardjs.com/

3.1 Linting

Manually formatting code to conform to a specific style is laborious so it is best to automate
this task. Programs that check code for stylistic issues and common syntactical errors are
known as linters. We will be using the StandardJS linter to format our JavaScript files.
First install the StandardJS package (what we would call a library in C++) using the Node
package manager, npm. npm is automatically installed as part of the Node installation
(Section 1). Type the following in the terminal (if your terminal does not have focus, then
you can change to it using the shortcut ctrl ` , which is handy).

npm install standard --global

Now we have the node modules installed which are able to format our JavaScript code
according to the Standard style. We still need to integrate this functionality within VS
Code. To do that, install the StandardJS extension for VS Code.
It is helpful to set the extension to automatically format your code when it is saved. To do
this, go to File|Preferences|Settings (or use the shortcut ctrl ,) and type “standard”
in the search box. Look for the settings Standard:Auto Fix On Save and Standard:Enable
Globally, and tick both checkboxes.

Exercise 2

Now test this out by typing out Listing 1 and then saving the file. It should be formatted to
look like Listing 2. StandardJS is also helpful in that it will identify unused variables and
other anomalies. These will be listed in VS Code’s PROBLEMS pane (ctrl shift M).

4 Variables

In JavaScript, variables are declared mostly the same way as in C++. However, because
JavaScript is loosely typed, the variable type is not given when the variable is declared and
the variable need not be initialised. In C++ when you use auto, you are required to initialise
the variable so that its type can be deduced.

4.1 Variable Declaration

The let and const keywords are used to declare variables. Use let for ordinary variables
and const for constants. Remember to minimize variability by using const whenever
possible. Variable names can only start with letters, underscores and dollar signs. Below
are valid declarations of variables:

let a
const b = 3
let $c, _d
let e = 4, f = 'five'

In this example, the values of a, $c and _d are undefined while b, e and f have been
initialised with values. b is a constant and cannot be changed.

3

https://marketplace.visualstudio.com/items?itemName=standard.vscode-standard

4.2 Strict Mode

JavaScript was originally intended for writing very small web scripts and so ease-of-use
took precedence over code quality. An example of this is that if you forget to declare a
variable and simply start using it, the compiler will happily create a global variable for you
and not complain. This is known as a leaked global and is undesirable for obvious reasons
in larger applications. To prevent this from happening it is necessary to run JavaScript in
strict mode. To enable this, the first line of your JavaScript files should always contain the
special directive: 'use strict'

Strict mode also prevents us from naming variables after keywords that are reserved for
future use, such as public.

4.3 The var Keyword

In older JavaScript code, and in the MDN JavaScript documentation which will be referred
to from time to time, you will see variables being declared with the var keyword. Writing
code using var declarations is far more error-prone than using let and const. This is
because variables declared using var:

• can be redeclared without warning,

• are function scoped, not block scoped, as we are used to, and

• can be used prior to their declaration because of variable hoisting.

Therefore, we will only be declaring variables with let and const.

5 Data Types

In JavaScript, there are seven data types. Six data types are primitive:

• Boolean: Has two values: true and false, just like C++.

• Number: This type includes both integers and decimal values.

• String: Predictably, these are sequences of characters.

• Special types: Null and Undefined. These types can only be set to a single value:
null and undefined respectively. The compiler will assign undefined to variables
that are not initialised. We should assign null to a variable if we intentionally wish
to clear it.

• Symbol: A symbol is created by invoking a function which produces an anonymous,
unique value. This is used in more advanced JavaScript programming and we won’t
discuss it further in this lab.

Lastly, there is the Object type. In JavaScript an object is a list of key-value pairs (like amap
in C++). An array is also an object which may contain elements which are not necessarily of
the same type (unlike C++). Surprisingly, functions are regular objects as well. This should
be the first hint that JavaScript, although syntactically similar to C++, is fundamentally
different. Functions enjoy an equal, if not privileged status, when compared to objects.
Objects, arrays and functions will be discussed in much more detail below.

4

https://developer.mozilla.org/en-US/docs/Web/JavaScript

5.1 Aside: Template Strings

At this point it is worth discussing template strings which allow variables and/or code to
be embedded within a string literal. This makes the resulting string much more readable.

'use strict'

const a = 5
const b = 10

// an ordinary string
console.log('Fifteen is ' + (a + b) + ' and not ' + (2 * a + b) + '.')

// using a template string - note the back-ticks
console.log(`Fifteen is ${a + b} and not ${2 * a + b}.`)

Listing 3: Using template strings

In Listing 3 we can see that templates strings are declared with the back-tick symbol (`)
and they allow expressions (code) to be embedded within them using ${expression}.

5.2 Weak Typing

As mentioned before, JavaScript is loosely typed. Types are only decided when a value is
assigned to a variable and they can be changed on-the-fly based on the operations done to
the variable.

Exercise 3

Try typing the following into a .js file and running it in the terminal:

'use strict' // don't forget this, it won't be shown in future code samples

let a = 'hello'
console.log(`a = ${a}, "a" is ${typeof a}`)

a = 5
a += 2
console.log(`a = ${a}, "a" is ${typeof a}`)

a = true
console.log(`a = ${a}, "a" is ${typeof a}`)

The typeof operator is explained in the MDN reference. Notice how the type of a changes.

5

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/typeof

6 Functions

In JavaScript, functions are treated as values which means that we can assign them to vari-
ables. This is illustrated in line 1 of Listing 4. On the left-hand side of the equals sign is
the variable add which is being assigned to the function expression on the right-hand side.
The function is anonymous in that it has not been given a name and can therefore only be
accessed through the variable assigned to it. In JavaScript, functions are treated as values
which means that we can assign them to variables. This is illustrated in line 1 of Listing 4.
On the left-hand side of the equals sign is the variable add which is being assigned to the
function expression on the right-hand side. The function is anonymous in that it has not
been given a name and can therefore only be accessed through the variable assigned to it.

1 const add = function (a, b) { // function expression assigned to 'add'
2 return a + b
3 }
4

5 const result = add(2, 3) // execute the function
6 console.log(result)
7

8 const anotherAdd = add
9 console.log(anotherAdd(12, 4)) // execute it again

Listing 4: An anonymous function expression

The function is first run on line 5where the opening and closing braces are encountered. On
line 7 another variable (anotherAdd) is assigned the function expression and the function
is executed once more on line 9.
No types are given for the function parameters or the return type. If the function is called
and a parameter is missing then the parameter is undefined. For example, if the function
was called using add(2) then b would be undefined. Also, if a function does not explicitly
return a value then the return value is undefined. It is also worth noting that function
parameters can have default values.

Exercise 4

Create and test a function which converts temperatures from Fahrenheit to Celsius.

6.1 Function Declarations

JavaScript also allows for function declarations in which functions are named and declared
in similar fashion to C++. To find out more about this refer to the documentation on
function declarations. We will typically use function expressions.

7 Objects

JavaScript objects stored keyed collections of data. Listing 5 shows how to create a student
object and access its properties.

6

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Default_parameters
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/function

let student = {
name: 'Kwezi',
studentNumber: 453528

}

console.log(student) // print the entire object

// access the object's properties
console.log(`${student.name}'s student number is ${student.studentNumber}`)

Listing 5: Creating a student object and accessing its properties

Functions can be written to manipulate objects, as shown in Listing 6.

const addAge = function (theStudent, age) {
theStudent.age = age // add a new property called age to the student

}

addAge(student, 20)

Listing 6: Adding a new property to student

Verify that the code in Listing 6 works as expected.

Exercise 5

Write some JavaScript to create a course object which has a single courseCode property.
Set the courseCode to the string 'ELEN4010'.
Now create function which takes in a course object as an parameter and adds the property
yearOffered. The yearOffered property should be determined from the course code.
Fourth year courses all contain the numerals “40”, third year courses contain “30”, and so
on. Hint: use the string class’s includes method.
Create another function which takes in a course as a parameter and returns a string sum-
marizing the course information. For ELEN4010 it should return: “ELEN4010 is offered in
year 4.”
Test your solution by creating course objects from other years of study.

7.1 Pass by Value and Pass by Reference

As in C++, primitive types (see Section 5) are passed by value, that is, a function receives
a copy of the variable which is passed to it.
Objects and arrays (Section 8), on the other hand, are passed by reference. It is helpful to
visualize JavaScript references as C++ pointers — not C++ references.
In Listing 6 the function accepts a student object as a parameter. Within the function
theStudent is a reference to the student object containing the name “Kwezi”. This means

7

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/includes

that any changes made to the properties of the student object within the function will
be reflected outside of the function. This was shown when adding the age property to
student.
It is important to note that the reference itself is passed by value. In other words, reassigning
a reference within a function will not affect the object passed in. This is illustrated in
Listing 7.

const setStudentToEmptyObject = function (theStudent) {
theStudent = {} // assign the reference to an empty object

}

setStudentToEmptyObject(student) // has no effect on 'student'

Listing 7: Object references are passed by value

7.2 Object Methods

In C++ we talk about an object having member functions. In JavaScript these functions
are known as methods. Methods are very easy to create by simply assigning an object’s key
to a value which is a function. Listing 8 demonstrates this. Notice how the getSummary
key has been assigned a function returning a summary of the student. The this keyword
refers to the object on which the function is being invoked and allows us to access the
other properties of the object. In C++ this can be used in member functions but it is not
required.

let student = {
name: 'Kwezi',
studentNumber: 453528,
// 'this' refers to the object on which the method is invoked
getSummary: function () {
return `${this.name}'s student number is ${this.studentNumber}`

}
}

Listing 8: Adding a method (function) to student

Exercise 6

Create an account object and provide methods for depositing and withdrawing money
from the account. Also provide a method which returns a summary of the account’s trans-
actions. This method should return a string similar to the following: “This account has a
balance of R 200. There have been deposits totalling R 300 and withdrawals totalling R
100.” You need to decide on what properties the account object should have.

8

8 Arrays

Arrays are an important object type in JavaScript. As in C++, they are zero-indexed. Unlike
C++, they are heterogeneous which means that they can contain different types. When
declaring as array, the elements are separated by commas as shown below:

let mixed = ['hello', 5.5, 7, false]

Arrays have the performance characteristics of a C++ vector because they are stored in
contiguous memory (if used correctly). Therefore, insertions and deletions at the end of
the array are fast.

Exercise 7

TheMDN reference on Arrays provides a comprehensive guide to the various Arraymethods.
Use the MDN reference to predict the output of the Listing 9.

const numbers = [76, 55.7, 89, 37.5, 61]
numbers.push(19)
numbers.unshift(61)
numbers[1] = 12
numbers.splice(3, 1, 99)

console.log(numbers)
console.log(numbers[7])

Listing 9: Exercising some of Array’s methods

9 Higher-Order Functions and Callbacks

Higher-order functions are functions that operate on other functions, either by taking them
in as arguments or by returning them. This is fairly common in JavaScript because functions
are values just like numbers and strings. Suppose we wish to log to the console every
element in our numbers array, we could do it in the usual fashion as shown in Listing 10.

for (let index = 0; index !== numbers.length; index++) {
console.log(numbers[index])

}

Listing 10: Using a typical for loop to display an array’s contents

However, a more idiomatic way of expressing this in JavaScript is to use a callback function
which is called by Array’s forEach method. This is shown in Listing 11. In this approach,
the forEach method calls the function that is supplied to it once for each element in the
array, and it passes the element in question as an argument. Notice how the function is
defined at the point at which the forEach method is called.

9

https://javascript.info/array#performance
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach

A callback function, or more simply a callback, is any function that is passed as an argument
to other code that is expected to call it (execute it) at some point in time. It is not called
directly as is done with normal functions.

numbers.forEach(function (element) {
console.log(element)

})

Listing 11: Using forEach and a callback function to display an array’s contents

Exercise 8

Write a function that applies an arbitrary function to each element of an array and places
the result in a new array. Your function signature should be:
const map = function (functionToApply, array)

Now test your map function with a function that squares the contents of an array which
contains numbers.
In fact, the map method already exists for JavaScript Arrays so there is no need to write
your own. Check that when you use Array’s map method the results match your own map
function.

10 Object Equality

In C++ primitive types can be directly compared but we are required to provide an equality
operator (operator==) in order to compare objects. JavaScript also allows for primitive
types to be directly compared. In Listing 12 we can use indexOf to search an array of
primitive types. indexOf returns -1 if the search element is not found.

const numbers = [76, 55.7, 89, 37.5, 61]

console.log(numbers.indexOf(89)) // prints 2
console.log(numbers.indexOf(234)) // element not found: prints -1

Listing 12: Searching for a primitive type in an array

When searching for elements using indexOf the element being searched for is compared
to each of the array elements using strict equality (===). No element is found in Listing 13.
This is becausewhen two objects are compared the equality operator compares their references
(think pointers in C++) not the actual objects’ properties.

10

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/indexOf

const electives = [
{
courseCode: 'ELEN4010',
yearOffered: 4

},
{
courseCode: 'ELEN4001',
yearOffered: 4

},
{
courseCode: 'ELEN4020',
yearOffered: 4

}]

console.log(electives.indexOf({ // no element found
courseCode: 'ELEN4001',
yearOffered: 4

}))

Listing 13: indexOf cannot be used to search for objects

To see this demonstrated more clearly, refer to Listing 14

// the empty objects' properties are not compared,
// their references are - '===' returns false
console.log({} === {})

// equal object references - '===' returns true
const someObject = {}
const otherObject = someObject
console.log(someObject === otherObject)

Listing 14: Comparing objects using strict equality

So in order to find an object in an array, we need to make use of Array’s findIndexmethod.
The findIndex method accepts a callback function which is called for each element in the
array. The callback function needs to be a predicate which means that it must return a
boolean value: true if the search element matches the array element, and false other-
wise. It returns the index of the first matching element that is found. This is illustrated in
Listing 15.

console.log(electives.findIndex(function (element) { // prints 1
return element.courseCode === 'ELEN4001' &&

element.yearOffered === 4
}))

Listing 15: Using findIndex to find an object within an array

11

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/findIndex

Exercise 9

Create a function to delete a student from the array of students given in Listing 16.

const students = [
{
name: 'Kwezi',
studentNumber: 453528,
yearOfStudy: 4

},
{
name: 'Pieter',
studentNumber: 454345,
yearOfStudy: 3

},
{
name: 'Jade',
studentNumber: 678343,
yearOfStudy: 4

},
{
name: 'Kiren',
studentNumber: 567893,
yearOfStudy: 4

}
]

Listing 16: Students array

Your function should take in the student to be deleted and the array of students. It should
return the modified array. If the student cannot be found then the array should be returned
unmodified. A call to the function is shown below.

const modifiedArray = deleteStudent({
name: 'Kiren',
studentNumber: 567893,
yearOfStudy: 4

}, students)

Your solution must not contain any for or while loops. Remember that arrays are passed
by reference so modifications to their contents within a function will be reflected outside
of that function.

11 Arrow Functions

Arrow functions offer a very compact way of defining functions. This can considerably
improve readability when functions are expressed in line as arguments for higher-order
functions.

12

// function (parameters) { function body}
const squareNormal = function (num) { return num * num }

// (parameters) => { function body }
const squareShorter = (num) => { return num * num }

// parameter => single-line function body
// OR (parameters) => single-line function body
const squareShortest = num => num * num

// all functions are called in the same way
console.log(squareNormal(2))
console.log(squareShorter(3))
console.log(squareShortest(4))

Listing 17: Shorter and shorter functions

The most compact syntax (squareShortest) can only be used for functions containing
a single return statement as the function body (the return keyword is omitted). Arrow
functions do not bind to this and therefore are not suited for use as object methods. Watch
this video by mpj which gives an excellent overview of arrow functions.

Exercise 10

Given the code in Listing 18, use arrow functions and Array’s filtermethod to produce an
array containing only fourth year students doing ELEN4010 as an elective. The resulting
array should only contain Kwezi and Kiren. Your solution must not contain any for or
while loops.

13

https://www.youtube.com/watch?v=6sQDTgOqh-I&t
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter

const electiveOne = {
courseCode: 'ELEN4010',
yearOffered: 4

}

const electiveTwo = {
courseCode: 'ELEN4001',
yearOffered: 4

}

const electiveThree = {
courseCode: 'ELEN4020',
yearOffered: 4

}

const electiveFour = {
courseCode: 'ELEN4017',
yearOffered: 4

}

const students = [
{
name: 'Kwezi',
studentNumber: 453528,
yearOfStudy: 4,
electives: [electiveOne, electiveTwo, electiveThree]

},
{
name: 'Pieter',
studentNumber: 454345,
yearOfStudy: 3,
electives: [electiveOne, electiveTwo, electiveFour]

},
{
name: 'Jade',
studentNumber: 678345,
yearOfStudy: 4,
electives: [electiveTwo, electiveThree, electiveFour]

},
{
name: 'Kiren',
studentNumber: 567893,
yearOfStudy: 4,
electives: [electiveOne, electiveTwo, electiveThree]

}
]

Listing 18: Students and their electives

14

12 Asynchronous Functions

In C++, we are used to functions that return a value once they have completed their task. A
result of these types of functions is that we have to wait for a function to finish processing
before we can continue to the next function. This is called blocking code, because it blocks
all other operation while it operates.
Imagine that you needed to read a file in for a user. While your file is being read in, you
wouldn’t even be able to display a progress bar because your code is busy waiting for the file
read operation to finish. This makes your program look unresponsive. (A similar problem
occurs on websites where images are loaded. If the load operation is blocking, the website
would be completely unresponsive while loading each image one-by-one).
Let’s see a simple demonstration:

const sleep = function (sleepDuration) { // A function that blocks
const now = new Date().getTime()
while (new Date().getTime() < now + sleepDuration) { /* do nothing */ }

}

console.log('Starting')

sleep(10000)

console.log('Done, doing other things')

for (let i = 0; i < 10; i++) {
console.log(i)

}

console.log('Done with other things')

Listing 19: Blocking sleep function

Notice how long you had to wait.
In order to fix this issue, JavaScript uses non-blocking function calls. It achieves this by
using callbacks. Instead of returning a value, a function returns immediately and takes an
extra callback function as an parameter. This callback function is called when the function
completes with the results as an parameter and contains code to be run after the function
completes. By returning immediately, the function lets the main code continue running
while it completes its task in the background. Let’s try this out:

15

console.log('Starting')

// setTimeout(callback, duration) is an asynchronous version of sleep
setTimeout(() => {

console.log('Done Waiting')
}, 10000)

console.log('Done, doing other things')

for (let i = 0; i < 10; i++) {
console.log(i)

}

console.log('Done with other things')

Listing 20: Non-blocking sleep function

Notice that your code did the rest of its work before the setTimeout function finished.

13 npm and Modules

It would be preferable to be able to structure our program using different files. For this
purpose, Node provides the module system.
Let’s learn about it using a demonstration: Create files called main.js and mod.js. In
main.js, put:

console.log("Loading a module");
require("./mod");
console.log("Done");

In mod.js, put:

console.log("I'm inside a module!");

Now run main.js using Node.
Modules are scripts that we can call from our main file. However, we can use them to
implement libraries (similarly to C++’s include) using the exports functionality. Let’s
learn using a demonstration again: Edit main.js to say:

console.log('Loading a module')
const mod = require('./mod')
console.log('Mod:', mod)
console.log('Done')

Edit mod.js to say:

16

console.log("I'm inside a module!")
module.exports = {

some: 'module',
number: 2

}

Now run main.js using node main.
Notice that require returns the value of module.exports from mod.js once its done
running. Remember, unlike a function return, require will run the whole script, even if
module.exports was assigned in the middle. It will only return when the script finishes.

13.1 Built-in modules

Node ships with a few modules built into it. Let’s try using the File System module to read
a text file: Edit main.js to say:

let fs = require("fs");
fs.readFile("./ELEN4010.txt", "utf8", (err, data) => {

// utf8 is the encoding of the file
if (err) throw err; //callbacks usually get errors in this format

//err will either contain the error or null
console.log(data); //if there weren't errors, send the data to the console

})

Create ELEN4010.txt and fill it with a short essay recounting your experiences in ELEN4010
so far (or anything else really, it doesn’t matter). Now run main.js using node main.
The readFile function returns the file’s contents through a callback function which means
that it runs asynchronously.

13.2 npm Modules

Apart from the core modules built into Node, there are over a million third-party modules in
the npm registry. Modules from npm can be installed by calling npm install <packagename>
from the terminal in your project directory.

Exercise 11

Since we are too lazy to make essays for all the other courses, create a script using Dolor
and the fs module to fill a text file for one of your other courses with placeholder text.

14 Express

In this course we will be making use of a framework called Express. It is a framework for
using Node as a web server. To begin, create a new folder and cd into it using the terminal.
Now run:

17

https://www.w3schools.com/nodejs/nodejs_filesystem.asp
www.npmjs.com
https://www.npmjs.com/package/dolor
https://expressjs.com/

npm init

Repeatedly press enter to accept the defaults. You will notice that the main file is set to
index.js by default.
Now install Express using:

npm install --save-exact express

Note, if you are behind the Wits proxy, you may need to configure npm with
your proxy user name and password. Type the following:

npm set proxy http://students%5C<student-no>:<password>@proxyss.wits.ac.za:80

All special symbols have to be URL encoded so the “\” after the domain is en-
coded as “%5C”. If there are any special symbols in your password, supply the
URL encoded versions instead.

Using File Explorer navigate to the project folder. This is the folder in which you ran
npm init and install. You should notice both a new folder called node_modules and
a file named package.json. Open the package.json file and you will see that a section
exists called dependencies and this lists the express module and its version number. So
package.json keeps track of all of the modules that we are using in our project. The
node_modules folder contains the actual express module code as well as the code for all
of the modules that express itself depends on.
Next, let’s change tack and add an important file to our project folder: the .gitignore file.
We need this file because we will be putting our code under version control and we don’t
want to commit unnecessary files. Download this .gitignore for Node and save it to the
project folder. This .gitignore file contains the line: node_modules/. In other words,
the Node modules that we have installed will not be checked into our repo. This allows us
to avoid adding potentially hundreds of megabytes of dependency code to our repo which,
in turn, means that it will be faster and easier to work with.
The question then is: how will we be able to deploy our code to a production environ-
ment if the required dependencies are not present? This is handled through npm and the
package.json file. When npm install is run without arguments it will download all of
the dependencies listed in the package.json file and generate the node_modules folder
with the installed modules. So when we deploy to Azure, one of the first steps in the build
pipeline will be to run npm install.
The --save-exact flag in the npm install command pins the version of the dependency
(in this case, Express) in the package.json file. So, for example, if you push your code
to GitHub and someone else in your group downloads it and runs npm install then the
exact same version of Express will be installed on their machine rather than a more recent
version, assuming there is one.

18

https://www.w3schools.com/tags/ref_urlencode.asp
https://gitignore.io/api/node

Now, create index.js and put the following into it:

1 const path = require('path') // used later in the exercise
2 const express = require('express')
3 const app = express()
4

5 app.get('/', function (req, res) {
6 res.send('Hello World')
7 })
8

9 app.listen(3000)
10 console.log('Express server running on port 3000')

Run it using node and browse to 127.0.0.1:3000 in your web browser to see it working.
Try browsing to 127.0.0.1:3000/about. That does not work because we have not set up
a route for it.

14.1 Routing

Routes allow us to define how Express responds depending on the path that is accessed. A
routing function takes the following form:

app.<request type>(path, callback)

We have one route defined in index.js on line 5. We can see that the route is for a GET
request to the path ”/”.
Lets create a route for the about page and serve some HTML this time: First, create a folder
called views in your project directory. Inside this directory, create about.html with the
following:

<!DOCTYPE html>
<html lang="en">
<head>

<title>About</title>
<meta charset="utf-8" />

</head>
<body>

<h1>This website was made by:</h1>
<p>
(your name here)!
</p>

</body>
</html>

Now let’s define a route to the about page: In index.js add the following new route:

app.get('/about', function(req, res){
res.sendFile(path.join(__dirname, 'views', 'about.html'));

});

19

http://127.0.0.1:3000
http://127.0.0.1:3000/about

Terminate the current server by pressing ctrl C in the terminal. Now try running your code
and browsing to 127.0.0.1:3000/about again.

14.2 Routing as a Module

Putting all our routes into the main application script can be really inconvenient and messy.
As an alternative, we can define our routes as a module using express.router. It is a class
in Express that implements routing and can be added to your app as middleware.
Before we make a routing module, let’s move our routes to a router in index.js. First
create a router in index.js, replace your routes with:

1 // keep the first 3 lines from before
2 const mainRouter = express.Router()
3

4 mainRouter.get('/', function (req, res) {
5 res.send('Hello World')
6 })
7

8 mainRouter.get('/about', function (req, res) {
9 res.sendFile(path.join(__dirname, 'views', 'about.html'))

10 })
11

12 app.use(mainRouter)
13

14 app.listen(3000)
15 console.log('Express server running on port 3000')

Verify that your website still works.
Now, create a module called mainRoutes.js with the following:

const path = require('path')
const express = require('express')
const mainRouter = express.Router()
mainRouter.get('/', function (req, res) {

res.send('Hello World')
})

mainRouter.get('/about', function (req, res) {
res.sendFile(path.join(__dirname, 'views', 'about.html'))

})
module.exports = mainRouter

In index.js remove the routes (lines 4 – 10) and change the assignment of mainRouter
(line 2) to: const mainRouter = require('./mainRoutes')

Verify that it works using your browser.

20

http://127.0.0.1:3000/about

15 Deploying Node to Azure

15.1 Preparation

Now that you’ve set up your Node application locally, you will have to make changes so you
can deploy and run it as a web app on Azure.
Azure will automatically detect that you are wanting to run a Node application and it will
run the build scripts that are given in the package.json file that was created when you ran
npm init. In this case it will try to run the test script which has been created by default.
As we have no tests this will not work and the build will end prematurely. To prevent this
from happening delete the test script as shown below:

...
"scripts": {

"test": "echo \"Error: no test specified\" && exit 1" <-- DELETE THIS LINE
},
...

To make it easy to know if the Node server was deployed and launched successfully, alter
your mainRoutes.js file to contain the code below for the main route.

mainRouter.get('/', function (req, res) {
res.send('Hello World. I\'m a Node app.')

})

When your Node application runs locally, it accepts requests on port 3000. The standard
port for the web (http and https) is port 80. To make sure your application knows what
port to use, replace the app.listen(3000) and console.log lines with the lines shown
below.

const port = process.env.PORT || 3000
app.listen(port)
console.log('Express server running on port', port)

On the Azure server there is an environment variable called PORT which is assigned the
value 80. ‘process.env.PORT’ attempts to access this value and return it; however, if no
such variable exists then the value 3000 is passed to app.listen. This way if you run your
application locally it will still use port 3000 but once it is deployed to your Azure instance
it will automatically use port 80.

15.2 Deployment

Now we are finally ready to deploy our code. Make sure to commit all of your code to a
local Git repo and push this repo to a new Lab 2 GitHub repo.
We now need to run through the steps for creating a web app on Azure. Remember that
for Lab 1 we set up Azure to host static web pages; for this lab we need to set up Azure to

21

host a Node application. Navigate to your Azure portal and click Create a resource. Choose
to create a Web App and fill in the details as shown in Figure 1.

Figure 1: Choose Node 22 LTS as the runtime stack, and Linux as the OS, and South Africa
North as the region

Under the App Service Plan section, click on Explore pricing plans as shown in Figure 2.

Figure 2: Change the default pricing plan.

Then select and apply the Free F1 plan as shown in Figure 3. Click Review + create, check

22

https://portal.azure.com/

that you are using the Free sku, and click Create.

Figure 3: Select the Free F1 plan.

Now you will need to wait until your application is successfully deployed. Once it has been
deployed, we will setup continuous integration by clicking Manage deployments for your
app as illustrated in Figure 4.

Figure 4: Choose to manage the deployments of your app.

23

Complete and save the Deployment Center settings given in Figure 5. This will cause the
GitHub Actions service to add a .github/workflows directory to your repo containing a
YAML file describing the workflow.

Figure 5: Authorise GitHub and select your organisation (your own account) and the repo
and main branch for this lab.

24

Figure 6: Authorise GitHub and select your organisation (your own account) and the repo
and main branch for this lab.

On saving the settings, your website will be deployed to:
http://<app_name>.azurewebsites.net

Whenever you push updates to your repo, your website will be updated automatically. You
will need to wait a few minutes for your content to appear. Check that your “Hello world”
message appears and that your “About” page works. Your Node app is now running on
Azure!

25

To conclude, visit your Lab 2 repo on GitHub, and then click the Actions tab. Click on the
commit that you have just made and click on build under Jobs on the left of the screen. On
the right-hand side you will see the steps involved in the build pipeline. In Figure 7 you
can see the npm install, build, and test step in more detail. At this stage, we just have a
simple pipeline which installs the app. Later on in the course, we will learn how to add
additional steps, like running automated tests, and calculating code coverage.

Figure 7: GitHub Actions tab showing the build pipeline.

Copyright Wits School of Electrical and Information Engineering
Version 2.6, 2025 (elen4010-lab2.tex)

26

	Install Node.js
	Run Your First JavaScript Program
	JavaScript Syntax and Style
	Linting

	Variables
	Variable Declaration
	Strict Mode
	The var Keyword

	Data Types
	Aside: Template Strings
	Weak Typing

	Functions
	Function Declarations

	Objects
	Pass by Value and Pass by Reference
	Object Methods

	Arrays
	Higher-Order Functions and Callbacks
	Object Equality
	Arrow Functions
	Asynchronous Functions
	npm and Modules
	Built-in modules
	npm Modules

	Express
	Routing
	Routing as a Module

	Deploying Node to Azure
	Preparation
	Deployment

