
ELECTRICAL AND INFORMATION ENGINEERING
University of the Witwatersrand, Johannesburg
Software Development III

Laboratory 1 — Git Collaboration, Azure Deployment

In this lab we will go over the basics of Git usage as well as show how a static website can
be deployed to Microsoft’s Azure cloud service.

1 Install Git and Git Bash

Download the official Git command-line client and follow the instructions for your operating
system. Visual Studio Code, which we will install next, relies on this for its Git integration.

2 Install Visual Studio Code

Visual Studio Code, or VS Code as it is commonly known, is a cross-platform, open-source,
lightweight code editor. It is very popular and is used daily by millions of developers. We
will primarily be using it for editing JavaScript but it also supports Markdown and multiple
other languages through extensions, including LaTeX and SQL.
It is interesting to note that it is built using Electron which is a framework for deploying
JavaScript applications to the desktop using Node.js as the runtime.
Download and install VS Code.
In order to familiarise yourself with the editor’s functionality it is worth watching the fol-
lowing short videos:

1. Getting Started

2. Code Editing (go here for more detail on basic editing)

3. Productivity Tips

As you will have seen, keyboard shortcuts, are prevalent throughout VS Code and these
can greatly increase productivity. Take the time to learn some of the ones related to the
basic use of the editor.
Lastly, the Code 2020 YouTube channel has an extensive collection of tips on all aspects of
VS Code. If you want to really maximise your use of the editor it is worth checking out.

2.1 Using Git Bash in VS Code’s Integrated Terminal

The default shell, which runs within the integrated VS Code terminal, is Windows Power-
Shell. You may wish to change this to use Git Bash. To change the default shell, go to
the command palette in VS Code by typing Ctrl-Shift-P, and then type Select Default
Shell and choose Git Bash. If you do choose to use Git Bash, then you will need to use Unix
commands for changing directories, etc. so it is worth reviewing the basic Bash commands.

1

https://git-scm.com/downloads
https://code.visualstudio.com/docs/languages/markdown
https://marketplace.visualstudio.com/vscode
https://marketplace.visualstudio.com/items?itemName=James-Yu.latex-workshop
https://marketplace.visualstudio.com/search?term=sql&target=VSCode&category=All%20categories&sortBy=Relevance
https://code.visualstudio.com/
https://code.visualstudio.com/docs/introvideos/basics
https://code.visualstudio.com/docs/introvideos/codeediting
https://code.visualstudio.com/docs/editor/codebasics
https://code.visualstudio.com/docs/introvideos/productivity
https://code.visualstudio.com/shortcuts/keyboard-shortcuts-windows.pdf
https://www.youtube.com/c/Code2020/featured
https://www.git-tower.com/learn/git/ebook/en/command-line/appendix/command-line-101

VS Code: Using VS Code for version control

Many Git tasks can be accomplished directly in VS Code without having to use the
command line. For some of the sections in this lab, the VS Code procedure is shown
in a box like this one.

3 Setting up Git

Once you have installed Git, there are a few things to do before you can start working.

3.1 Setting up your global identity

Whenever you make a change using Git, your name and email address are recorded. These
can be set up per-repository or globally (per-installation). We will be configuring a global
ID. To do so, open the terminal/git bash and type the following in mutatis mutandis (i.e.
use what is below as a template, changing that which must be changed):

git config --global user.name "Micky Duck"
git config --global user.email "micky.duck@students.wits.ac.za"

3.2 Setting up your editor

Git brings up an editor at several points for you to make comments. The default editor is
vi, which, while it has its share of devotees, does not have obvious keystrokes. To use VS
Code instead, type the following:

git config --global core.editor "code --wait"

Note, you are free to use any editor that you wish, including the command line editors,
emacs, nano and pico, or the default text editor for your system: notepad for Windows,
textedit for OS X or gedit for Ubuntu (and most other Linux distros). If you wish to use
one of these, instead of VS Code, then Google the appropriate command for the Git config
file.

4 Creating and using a local repository

Now we will create a local repository and put some files under version control.

4.1 Initialising the repository

Create a folder where you want your repository to be. Now open the terminal/git bash
again and type the following in mutatis mutandis:

2

cd /path/to/my-git-repo # From now on I'm going to assume you are in the
repository directory unless directed otherwise

git status # This line should give you an error
git init
git status # This line should not give you an error

Review the output of the git status commands. We’re going to be using this command
a lot.

4.2 Committing Files

Now that we have a repository, let’s add some files. Since we’re going to be doing web
development, let’s make a simple website. In your repository folder, create a file called
index.html and type the following in exactly as below:

<!DOCTYPE html>
<html lang="en">
<head>

<title>Hello World</title>
<meta charset="utf-8" />

</head>
<body>

<h1>Hello World</h1>
<p>
🌐 - Hello (your name here)!
</p>

</body>
</html>

Also create a file called dummy.html without any text in it.
Open index.html in your web browser. Not pretty, but it works!
Commits: Every time you save changes with Git, you need to make a commit. A commit
is like a snapshot of the state of your repository when you made the commit. This allows
you to see all the previous versions of your files by moving between commits.
Commit this file with Git:

git commit -m "My first commit"

The output should be ... nothing to commit?
Check the status of the repository:

git status

3

File tracking: Git doesn’t automatically track files because there are often files that we don’t
want to keep under revision control such as binaries, compilation artefacts, debug logs, and
any other content that would bloat the repository unnecessarily. To keep a project small
and efficient, you should only track source files and omit anything that can be generated
from those files.
So, our files need to be tracked. This is done by staging them.
Staging: Continuing on the photography metaphor, in order to include something in a
snapshot (commit) it needs to be staged. This is done using the git add <files> com-
mand which tells Git to include the listed files in the next commit. Staging has to be done
before every commit, even if the file is tracked.
Stage index.html and dummy.html:

git add index.html dummy.html
git status

Try committing the files again:

git commit

Your chosen text editor should come up. Type the message ”My first commit” and save the
file. Now close the editor. This signals to Git that you are done entering your message and
that it should continue with the commit.
Make sure the commit worked:

git status

What does the -m flag do?
Working Directory: Note that you could have many Git repos. Git, by default, assumes
you are referring to the repo in the current directory. The contents of the current directory
is the working directory. Usually there will be some minor to moderate changes of the
contents of the directory compared to the most recent commit. You can restore files from
previous commits into your working directory, if you need to.
Staging more efficiently: The git add command supports flags to make staging files
faster. By giving the relative folder path to the repository folder (git add . ← the dot
is the file path) Git will stage all files that are new or modified as well as files that have
been deleted. git add -u . will only stage tracked files that have been modified or
removed and git add --ignore-removal . will ignore deletions, but stage both tracked
and untracked files.
Staging and committing as a single command: the -a flag can be used when committing
to automatically stage changes to and deletions of tracked files. Thus, in most cases where
new files have not been created, a commit can be reduced to:

git commit -am "<commit message here>"

4

VS Code: Repo initialisation staging and committing

Most Git tasks can be achieved by using the Source Control sidebar (Ctrl-Shift-G).
Watch this video on using Git within VS Code for a good introduction. For now, you
only need to watch up to 5:21. We will return in a later section to the rest of this
video.

Git tasks can also be done via the Command Palette (Ctrl-Shift-P). Call up the Com-
mand Palette and type initialize, stage, or commit to see the different options
pop up.

5 Moving between commits

Edit line 10 of index.html to reflect your name rather than the placeholder. Delete
dummy.html. Stage and commit index.html with an appropriate commit message.
Now, edit your name in line 10 of index.html replacing the first vowel with a ”q”. Stage
and commit this change with the message ”A Mistake”.
Look at the commit history of the repository using:

git log

Commit checksums: Note that the log gives a history of all commits. Next to each commit
is a checksum that acts as an ID. However, as we will see later, you don’t need to use the
entire checksum to refer to a commit, just the first part.

5.1 Reverting a commit

That last commit was clearly a mistake, let’s undo it.
To do this we are going to call git revert <commit ID> with the ID of the last commit.
Remember that you don’t need to type the whole checksum, just the first few digits. So
run the following (mutatis mutandis):

git log --oneline # To find out the checksum of the previous commit
Notice that --oneline only shows the first few digits
of the commit checksums

git revert 3eb20e6 # Substitute the first few digits of your commit checksum

Notice that instead of deleting the “A Mistake” commit, Git figures out how to undo the
changes it contains, and then tacks on another commit with the resulting content. So, our
fourth commit and our second commit represent the exact same snapshot. Git is designed
to never lose history. The third snapshot is still accessible, just in case we want to continue
developing it.
Let’s add an author page to our website. Create a file called author.html with the follow-
ing content:

5

https://www.youtube.com/watch?v=F2DBSH2VoHQ

<!DOCTYPE html>
<html lang="en">
<head>

<title>Authors</title>
<meta charset="utf-8" />

</head>
<body>

<h1>This page was made by:</h1>
<p>
(your name here)!
</p>

</body>
</html>

Let’s make some more mistakes:
Create two new files: tracked.html and untracked.html with anything in them.
Now run the following:

rm index.html
git add tracked.html

5.2 Undoing changes without committing

Now, we don’t want to commit those mistakes. Let’s revert them. However, we don’t want
to use git revert this time. We don’t want to just commit and revert because we’ll lose
all our useful work in creating author.txt. So we’re going to have to remove the incorrect
files manually.
Any newly created file that has not been Git added can just be deleted. But a file that we
have asked Git to add, must be unstaged using reset. Finally we can undo a change to a
file by restoring it from the repo. Here HEAD is a Git key word, which refers to the commit
we are about to operate on. Usually this refers to the most recent commit (as it does in the
example below), but we can change the HEAD.

rm untracked.html # untracked files can just be deleted
git status

git reset HEAD tracked.html # tracked files must be unstaged using reset
git status

rm tracked.html
git status

git restore index.html
git status

The restore command we used got the file from the most recent commit. But you can
also get a file (or files) from a previous commit. As an example, suppose we realise that it

6

was a mistake to delete the dummy.html file. We do a git log to remind us of when we
had it and find the commit ID. Then we change our status to checkout all the files from
that commit into the working directory. Do the following (mutatis mutandis) using your
commit ID, not mine:

git checkout d82778f7b9

Now you can do an ls and check that this was the commit where you had the dummy.html
file. If not, you checkout another commit until you find it.
Now you can copy the file into a temporary place:

mkdir ../tmp
cp dummy.html ../tmp

And we go back to where we came from and restore the file (master points to the most
recent commit).

git switch master
mv ../tmp/dummy.html .
rm -rf ../tmp
git add dummy.html
git commit -a -m "Restoring dummy.html"

As an aside, if we knew for sure which commit the dummy.html was in, we could have just
done

git restore --source d82778f7b9 dummy.html

Note that in this case we don’t have to do a git add because, although we deleted the file
from the directory, it knows this is the same file we used to track.

6 Branching and merging

Suppose you wanted to try out a new idea without using Git, you might copy all of your
project files into another directory and start making changes. If you liked the results, you
would copy the affected files back into the original project. Otherwise, you would simply
delete the entire folder and forget about it.
This is the functionality offered by Git branches… with some key improvements. First,
branches present an error-proof method for incorporating changes back into the main pro-
ject. Second, they let you store all of your experiments in the same directory, with the
same version control as your main project.
Let’s see our existing branches:

git branch

7

Themaster branch: Themaster branch is Git’s default branch and is usually used to denote
the main branch of a project, with experiments being branched from it.
Notice the * next to master? That means that it is the active branch (i.e. the branch
currently reflected in the working directory).
Let’s create a branch where we can develop a new feature:

6.1 Creating a branch

To create a branch from the active commit, type the following:

git branch <branch name>

Create a branch called “newFeature”.

git branch newFeature

To switch to the branch, call git switch with the branch name:

git switch newFeature

6.2 Committing to a branch

Lets add the links between our index and author pages in this branch. In index.html, add
a line above the body closing tag (</body>) with the following:

<p>Authors</p>

Similarly, in author.html, add:

<p>Return to home page</p>

Open index.html in your web browser and confirm that your new links work. Then stage
and commit your changes.
Let’s also make a second page to greet the universe in dummy.html. Change the contents
of dummy.html to:

8

<!DOCTYPE html>
<html lang="en">
<head>

<title>Hello Universe</title>
<meta charset="utf-8" />

</head>
<body>

<h1>Hello Universe</h1>
<p>
Hello (your name here)!
</p>

<p>Return to home page</p>
</body>
</html>

Add a link to your second page into index.html and test that all your new pages and links
work. Then, stage and commit your changes.
Now that we’re happy that our feature is finished, let’s switch back to master:

git switch master

Do you notice that all your changes have been undone? Let’s look at the log:

git log --oneline

Your new commits are missing, this is because the commits were made on the newFeature
branch.
Since we’re done with that branch let’s merge it back into master. This is like copying your
changes back into your main folder:

git merge newFeature
git log --oneline

Feature Branches: By creating branches for features in development, we can ensure that
no incomplete code is on master. This allows us to have a master branch that is always
ready to be deployed, since it only contains stable, tested code. What are the drawbacks
of this approach?

7 Git Collaboration

For the next section pair up with another member of your group. Where instructed work
with your partner.
In this course we will be using GitHub to host our repositories. Create an account and a
new repository for you and your partner. You only need to create one repo for the both of
you. Add your partner as a collaborator in the repo settings window so that you both have
permission to work on the code.

9

Figure 1: The settings window on GitHub.

7.1 Local and Remote

In order to work on the code in your new repository, you need to create a local (on your
machine) copy of it.
This is achieved by cloneing it from your remote repository (GitHub). Get your repository
URL from GitHub using the ”Clone or Download” button on you repository page. Copy the
SSH URL.

Figure 2: The clone/download button on GitHub.

Now, in the folder where you want to clone your repository (it will create a new subfolder)
type the following command:

git clone <Repository URL> # e.g. git clone https://github.com/Student/Lab1.git

Git should create a local copy of your repository.

VS Code: Collaboration using a remote repo on GitHub

Return to the video on using Git within VS Code and watch from 5:21.

7.2 Pushing and Pulling

When working with this repository, most interactions are the same as previously with the
local-only repository. However, in order to synchronize the remote repository with your
local copy, two new concepts are defined, pushing and pulling.
Let’s make some changes and see how to sync them to the remote.

10

https://www.youtube.com/watch?v=F2DBSH2VoHQ&t=321s

Open index.html and edit it so that the placeholders in brackets are replaced with their
correct values. Confirm that your changes are correct using a browser, stage and commit
your changes.
Confirm that your commit has worked.

git log --oneline

Browse to your repository in GitHub and look at the commits to the repository. Do you
notice that your new commit isn’t there? It’s because your changes to your local repository
haven’t been synced with the remote yet.
Before we sync the repository, ask your partner to clone the repo on their machine.
Now we can sync your repository. Before we can do that, lets find out what our remote is
called:

git remote -v

Now we can see that our remote is called origin

So let’s tell Git to push the changes in our local repository up to the remote:

git push -u origin

The -u argument tells Git to set the remote as the upstream (default remote) repository so
that we can just call git push next time.
Now switch to your partner’s repository. Let’s get the changes that have been made:

git pull -u origin

Open index.html in your browser to confirm that the pull worked.
In order to ensure that you are always committing changes to the newest version of the
repository, you should always pull before you push. This ensures you receive any new
commits that have happened to the remote repository before you push your own commits.
Now that we have seen that we can synchronise our repositories, let’s look at what happens
when two people edit the same file.

7.3 Merge Conflicts

Switch back to your repository and edit your index.html, add a group bio to your home
page describing the group. To do this, add another paragraph (<p>) below the existing
one and type your bio in there. Open index.html in your web browser to confirm your
changes, stage and commit them.
Do the same for the index.html in your partner’s repository. In your partner’s repository,
however, pull and then push the changes up to GitHub.

11

Now switch to your repository and pull their changes from GitHub. Your output should tell
you that a merge conflict occurred and it failed to automatically merge the files, instructing
you to fix conflicts.
When two people attempt to commit changes to the same section of a file, Git is unable to
decide which change to use (or whether to keep both and in what order). This is called a
merge conflict. To fix the conflict, it delegates the decision on what to keep to the developer
who attempts to commit their changes second. This is why you must pull before you push.
Okay, let’s resolve this merge conflict. Open index.html and look at the section where you
added your code. Notice that Git has added both versions of the line(s) with big delimiters
(“<<<<<<< HEAD”, etc…) between them? To fix the conflict, make the file valid again by
removing the delimiters and deciding what to keep. Now call:

git commit

Notice that Git has already filled your message in for you?
Finally, pull and then push your changes up to GitHub.
Doing a merge using an ordinary text editor can become tedious and difficult in situations
where conflicts happen in many parts of many files. VS Code, however, has excellent, built-
in, support for handling diffs and merges.

VS Code: Merge conflicts

Clicking on the Source Control icon on the left-hand side of the screen, and then
clicking on a particular file within your repo allows you to easily see the changes
between different versions of the file, as well as deal with merge conflicts. For merge
conflicts, differences are highlighted and there are inline actions to accept either one
or both changes. Once the conflicts are resolved, you can stage the conflicting file
so that you can commit those changes. This is illustrated in this video on resolving
merge conflicts.

Induce a merge conflict with your partner by adding another paragraph to both your and
their index.html. The second partner to push will be notified of a conflict. Use VS Code
to resolve the conflict. When you’re done, save the file and commit the fix as usual, then
pull and push. Make sure that both you and your partner have an opportunity to resolve
a merge conflict by changing the order in which you push your changes.

VS Code: Viewing the repo’s commit history

VS Code has a useful extension which allows you to view the commit history of a
repo. The commit history displays all of the commits and branches of the repo and
helps you to keep track of the work that has been done. Install Git Graph and use
it to review the work that has been done in this lab. Git Graph can also be used to
create branches, tag commits, and so on.

8 Hosting Static Web Pages in Azure

This section of the lab will show you how to simply host the static web pages, that you
created earlier, in the cloud. In subsequent labs, we will introduce Node as well as con-

12

https://www.youtube.com/watch?v=xNVM5UxlFSA
https://www.youtube.com/watch?v=xNVM5UxlFSA
https://marketplace.visualstudio.com/items?itemName=mhutchie.git-graph

tinuous integration and how to run tests etc. before deploying your code. Additionally, the
group laboratory web application will need to be developed using Node.js. For the pur-
poses of this exercise, everyone will need a remote repo that is managed by their account
on GitHub. This will not be necessary for the group project as only one deployment will
be needed. However, for this lab, everyone whose accounts weren’t used in the previous
exercise, must also create remotes and push their local repos up to them. Every person
should have a repo they can access by going to github.com/UserName/RepoName.
Firstly, sign up for a Microsoft student account here: https://azure.microsoft.com/en-
us/free/students/. You will need a Microsoft account to complete the Azure Student
Account registration.
Go to the GUI interface for Azure at https://portal.azure.com/ and select Create a
Resource and then select WebApp as the resource that you would like to create. Choose to
Publish a Static Web App as shown in Figure 3.

Figure 3: Create a Static Web App

Fill in the details as shown in Figure 4 and Figure 5, signing into GitHub and using your
own app details, as required.

13

https://azure.microsoft.com/en-us/free/students/
https://azure.microsoft.com/en-us/free/students/
https://portal.azure.com/

Figure 4: Choose a name for your Web App

14

Figure 5: Link your app to your repo hosting the code and deploy the main branch

Your are now in a position to Review + create your application. Then choose Create and wait
while your application is initialised and deployed. When the deployment is complete you
can visit your (auto-generated) website URL to view your web pages. Do this by clicking
Go to resource and then clicking the URL that is given. Whenever you push changes to your
GitHub repo, your website will be updated automatically after a couple of minutes.

Copyright Wits School of Electrical and Information Engineering
Version 3.12, 2025 (elen4010-lab1.tex)

15

	Install Git and Git Bash
	Install Visual Studio Code
	Using Git Bash in VS Code's Integrated Terminal

	Setting up Git
	Setting up your global identity
	Setting up your editor

	Creating and using a local repository
	Initialising the repository
	Committing Files

	Moving between commits
	Reverting a commit
	Undoing changes without committing

	Branching and merging
	Creating a branch
	Committing to a branch

	Git Collaboration
	Local and Remote
	Pushing and Pulling
	Merge Conflicts

	Hosting Static Web Pages in Azure

