
ELECTRICAL AND INFORMATION ENGINEERING
University of the Witwatersrand, Johannesburg
Software Development II

Project 2025 — Dig Dug

1 Introduction

Dig Dug was a popular arcade game created and released by Namco in 1982 [1]. The
object of the game is to dig tunnels and destroy underground monsters by inflating them
with a harpoon-like weapon or by dropping rocks on them. Bonus points can be earned
by collecting fruit and vegetables which appear at the centre of the screen. To understand
how the game works in more detail, you should watch it being played.
Your task is to write a “Dig Dug” type game for the PC. This implies that your game is based
on the same game mechanics as Dig Dug (see Section 4) but you are free, and encouraged,
to choose any game theme and backstory that you like.

2 Project Outcomes

On completion of this project you should be able to:
• Perform an object-oriented decomposition/analysis of a software problem which in-

volves a variety of interacting objects.
• Design and implement an object-oriented solution in C++.
• Understand and use existing software libraries in conjunction with your own code.
• Provide a test suite verifying the correctness of your software.
• Provide the requisite documentation for a software project, including an automatic-

ally generated technical reference manual.
• Work successfully in small team to deliver a software product.

The purpose of this project is to learn software design and engineering by applying the
principles and practices covered in this course to the development of a software product.

3 Constraints

The game needs to be coded in ANSI/ISO C++ using the raylib-cpp v5.5.0 library. This
library is a C++ wrapper for raylib. You may not use raylib itself. All submissions must
build and run on Windows even though the libraries themselves are cross-platform.
The emphasis of this project is on good object-oriented design and not on fancy graphics.
Good graphics are only regarded as a minor feature enhancement. With regard to the
graphics, the dimensions of your game window must not exceed 1600 × 900 pixels.
You may not use any other libraries, or frameworks, that are built on top of raylib or
raylib-cpp.

1

https://www.youtube.com/watch?v=j8HqpUxDBCA
https://github.com/RobLoach/raylib-cpp


4 Game Mechanics

A screenshot from Dig Dug is depicted in Figure 1 and described below. In order to see the
screenshot in colour you should download the project brief from the course website.

Figure 1: Dig Dug screenshot from [1]

The player, represented by the blue and white Dig Dug character, is near the centre of the
screen. Dig Dug can move in four directions (up, down, left and right) and digs a tunnel
wherever he moves. He can also fire his harpoon which destroys the undergroundmonsters.
His harpoon is fired in the direction that he is facing.
There are two types of underground monsters: red monsters and green dragons. Both of
these appear in Figure 1. When these monsters are located within tunnels their movement
is restricted by the tunnel; however, they are also capable of floating diagonally through
the earth from one tunnel to another. Whenever they do this they turn into a pair of
disembodied eyes. A disembodied monster is shown in the left-hand part of Figure 1.
Dig Dug is killed if he collides with either type of monster. He can also be killed by the fire
which the dragons occasionally breathe.
Finally, there are a number of rocks scattered about the screen. These rocks will fall if
Dug-Dug tunnels underneath them. They can be used to destroy monsters but the player
needs to be wary as Dig Dug can also be crushed by a rock if he remains underneath it for
too long.
The game level ends when one of the following scenarios occurs:

• Dig Dug wins by destroying every monster on the screen.
• Dig Dug loses by being killed either by a monster or a rock.

2



5 Categorization of Features

The following section describes the basic functionality that you are required to implement
for your game. Additionally, features which are considered minor and major enhancements
are listed. If these are implemented well, higher marks will be awarded in the Functionality
category (see the rubric and Table 1). If you want to implement a feature that is not listed,
please contact me first so that I can advise you. You are welcome to include audio in your
game; however, this is not regarded as a feature.

5.1 Basic Functionality

The following is considered basic functionality:
• The following game objects exist: Dig Dug, multiple red monsters, and the earth.
• Dig Dug moves correctly through the earth based on player input, and digs tunnels

wherever he moves.
• The monsters move autonomously and chase the player. At the start of the game at

least one monster is present in the same tunnel as Dig Dug.
• Dig Dug can shoot monsters with his harpoon, and the monsters die instantly.
• The game ends if Dig Dug collides with a monster or Dig Dug shoots all the monsters.

5.2 Minor Feature Enhancements

Minor enhancements include, but are not limited to, the following:
• The red monsters can also change into their disembodied forms and drift from tunnel

to tunnel in order to chase Dig Dug.
• Bonus items appear at the centre of the screen and extra points can be earned if Dig

Dug collects these.
• Graphics are good (not composed of simple shapes such as rectangles and triangles).
• There is some sort of scoring system and display. High scores are saved to disk from

one game to the next, and can be viewed.
• Dig Dug has more than one life and his remaining lives are depicted on the screen.
• The initial locations of the tunnels, rocks, monsters and Dig Dug are read in from a

file.

5.3 Major Feature Enhancements

Major enhancements include, but are not limited to, the following:
• Green dragons exist and kill Dig Dug on contact. They breathe fire which is capable

of destroying Dig Dug. They can also become disembodied and float from tunnel to
tunnel. Note that their disembodied form is different to that of the red monsters.

• Rocks exist and Dig Dug can tunnel underneath these in order to drop them on mon-
sters and crush them. Rocks are also capable of crushing Dig Dug if he stays under-
neath them for too long.

3



• The behaviour of Dig Dug’s harpoonmirrors the original gamemore closely. Monsters
are not destroyed instantly, instead it takes a few seconds for them to inflate and pop,
and Dig Dug is incapable of moving while this is happening (and he is vulnerable to
attack by other monsters). Dig Dug may prematurely stop inflating a monster, that
is, stop before it pops. In these cases the monster deflates and continues to move
around as before.

6 Project Submissions Overview

Agile methodologies are a popular method of developing high quality software. They are
both iterative and incremental in nature. Iterative implies that multiple passes through the
phases of the software development lifecycle take place. On completion of each iteration
a working build is produced that has a subset of the total functionality that is required.
This is usually released to the customer in order to elicit early feedback. Each iteration
results in an increment in functionality and iterations continue until the final solution is
achieved. Note that your code will probably change significantly between releases. This is
to be expected as your design converges on a final solution.
In order to encourage this style of development, there will be two interim submissions
and a final submission. The deadlines are available on the course website. The first two
submissions are submissions of work-in-progress and a reduced set of project deliverables
is required. The final hand-in will require the submission of all the project’s deliverables.
The deliverables required for each submission are summarized in Table 2 and described in
more detail in Sections 6.1 and 6.2.

6.1 First and Second Submission Deliverables

Each submission or release is required to have a splash screen which correctly informs the
user about the keys used for playing the game.
For the first submission you are expected to show exploratory use of the raylib-cpp and
doctest libraries. Very simple game and test functionality is expected: you need to have
implemented Dig-Dug who can be moved around underground, digging a tunnel as he
moves. There must be some associated tests verifying that Dig-Dug moves correctly and
that his movement is restricted by the screen boundaries.
For the second submission you are required to build on the functionality of the first sub-
mission. To ensure that you leave yourself sufficient time towards the end of the project to
complete any remaining functionality, testing, and the all-important documentation, the
functionality that is achieved by the second submission deadline affects the highest rating
achievable for the Functionality category (refer to Table 1). Functionality will only count
as being achieved if it has been decently implemented.
In order to promote the writing of tests concurrently with the writing of code there is a
requirement with regard to the amount of testing that has been achieved by the second
submission. Specifically, basic movement tests must be provided for all moving game objects
that have been implemented by this time. A five percentage-point penalty will apply if this
is not achieved.
The first two submissions do not require any reports. Release notes need to be provided,
and the commit containing the release’s source code, test code and resources needs to be
tagged (refer to Table 2). These submissions must meet the requirements given in Section 7.
Non-compliant submissions will be penalized (see Section 8.3.1).

4

https://witseie.github.io/software-dev-2/


Functionality present in second submission Highest rating achievable for
Functionality

Less than basic functionality Acceptable
Basic functionality Good
Basic functionality plus one
major feature

Excellent

Table 1: The highest possible rating that can be achieved for the Functionality category is
determined by the functionality present in the second submission. So, for example, if you
have implemented basic functionality by the second submission then you are eligible for a
mark of Good provided you meet the criteria given in marking rubric by the final submission.

Deliverable First & Second Final
Submission Submission

Tagged commit published as a GitHub release ✓ ✓
Accompanying release notes ✓ ✓
Project report ✓
2 × Academic Integrity declaration forms ✓
Signed work contribution declaration document ✓
Online work contribution declaration form completed ✓
Technical reference manual generated by doxygen ✓

Table 2: Deliverables required for each submission. The tagged commit for each release will
be built using CMake to produce a game executable, a test executable, and documentation.
The game executable must contain a splash screen with game instructions.

5



6.2 Final Submission Deliverables

Each project group (a group of two) must submit the deliverables listed in Table 2 and
comply with the requirements in Section 7. In addition to the deliverables required in the
earlier submissions, the final submission must include:

• A Project Report (limited to 8 single-column pages from start to finish) presenting the
problem; the domain model; a discussion on how the domain model is translated into
a design, including both static class structure and dynamic run-time behaviour; and
a critique of both the final functionality achieved and the object-oriented design. Do
not give an abstract, background section or literature review for this report.

• A digitally completed and signed Academic Integrity Declaration form from each stu-
dent. If this form is not signed and submitted then you will receive a zero for the
project.

• A single page Work Contribution Declaration signed by both project partners stating
which partner did which parts of the project and specifying each partner’s discretion-
arymarkwhichwill be added to the project mark (see Section 8.2). If no discretionary
marks are specified, or if the form is not signed by both partners, then these marks
will be forfeited.

• In addition, a Google form must be completed by each group member stating their
contribution percentage. The value given on this form must match that on the Work
Contribution Declaration. If the value does not match, or the Google form is not
completed, then 1 percentage point will be deducted from the percentage stated on
the Work Contribution Declaration.

• A low-level Technical Reference Manual explaining the source code to other program-
mers who might wish to understand and modify it. This manual will be automatically
generated using CMake and Doxygen.

7 Use of GitHub

7.1 The Project Repo

Your project repo must be modelled on the demo Pong project and contain the following
items located in the correct directories:

1. All the source code for the game in a directory called: game-source-code.
2. All the test source code in a directory called: test-source-code.
3. All the game resources (image files, font files, text files, audio files, etc.) in a directory

called: resources.
In the demo project, you have been provided with a CMakeLists.txt file. You must not
modify this file. We will use CMake along with this CMakeLists.txt file to build your
executables and documentation.
Do not include in your repo:

• The source code for any of the libraries being used.
• Files that are produced as a by-product of the build but are not necessary for running

the game. Such files include project files produced by the VS Code, object code files,
and so on.

• Any executables or library binaries.

6

http://www.doxygen.org


• The project report or any declaration documents.

7.2 Git/GitHub Workflows

Suggested workflows for the project are given in the submissions guide.

7.3 Project Releases

There are three aspects to a published project release on GitHub:
1. A tagged commit in the project repo forming the release,
2. A release title and release notes, and
3. A zip file containing the documentation (for the final release only).

These aspects are described in more detail below. Refer to the submissions guide for further
instructions on tagging a release.

7.3.1 Release Tags

A commit on the master/main branch needs to be tagged for each release. The tags for the
releases are to be named exactly as follows: v1.0 (for the first submission), v2.0 (for the
second submission) and v3.0 (for the final submission).
You can try out this process by creating a test release before any submission is due. For
example, you could publish a test release with the tag v0.1.

7.3.2 Release Notes

Release notes need to be published on GitHub for each release describing, at a minimum,
added, changed and removed functionality of the game which has been released. The release
notes need to follow the keep a changelog format.

7.3.3 Release Assets - Required for the Final Release

Upload a zip file containing the following to the Assets section of the GitHub release:
1. A PDF of the project report.
2. PDFs of all the declaration forms.

The zip file should be named using your student numbers as follows:
<student number 1>-<student number 2>.zip

8 Assessment

8.1 The Marking Rubric

The rubric, which forms part of this project brief, indicates how the project will be assessed.
Each category is rated from Unacceptable to Excellent. Each of these ratings corresponds to a

7

https://witseie.github.io/software-dev-2/labs/submissions-guide.pdf
https://keepachangelog.com/en/1.1.0/


Rating Mark
Unacceptable 0
Poor 20
Acceptable 55
Good 70
Excellent 95

Table 3: Ratings and associated marks

particular mark (shown below). The overall mark is determined by averaging the category
marks.
If any category receives a score ofUnacceptable then both students’ overall marks are capped
at 40%. Note, however, that the overall mark can be lower than 40%.

8.2 Teamwork Assessment

The ability to work well with others is fundamental to engineering, and to software engin-
eering, in particular. This is why teamwork is explicitly one of the outcomes of this project.
You may not work on your own and project partner changes will only be considered when
a student de-registers or there is clear evidence that one member of the group is not con-
tributing. You are required to act professionally and support each other in achieving the
goals of the project. It is a good idea to state your expectations from each other before the
project begins and to discuss how you will handle possible conflicts that could arise.
Both group members are expected to contribute fairly equally to the project. Each group
of two is allocated ten percentage points in discretionary marks. It is up to the group to
determine how to divide this. The division must be in terms of whole numbers; decimal
numbers will be truncated. The discretionary marks may be evenly split (5% and 5%) if it
is felt that both members contributed equally to the project. If this is not the case, the group
member who has made a greater contribution can be acknowledged by granting them a
larger share of the marks. The discretionary percentage points for each group member
are added to the overall mark to determine that member’s final project mark. In order
for the discretionary marks to be granted both group members have to agree on how the
percentage points are apportioned (refer to Section 6.2).
In order to account for gross differences in contributions to the project, the following rule
applies. The percentage of source code lines (across both game and test code, and including
comments and modified lines) contributed by each group member and present in a release
will be determined using: git summary --line *.cpp *.hpp *.c *.h. Note, this tool is
part of git-extras which is separate from Git and needs to be installed.
A penalty will be applied for each of the releases v1.0 and v2.0 in which the percentage
contribution of one group member is less than 35%. The group member with the less than
35% contribution will lose 5 percentage points from their final mark, in each case. If the
percentage contribution of one group member is less than 35% for the final release (v3.0)
then that group member’s overall mark for the project will be capped at 40%. Note that
under no circumstances may one group member commit work on behalf of the other group
member.

8

https://github.com/tj/git-extras/blob/master/Commands.md#git-summary
https://github.com/tj/git-extras/tree/master


8.3 Penalties and Bonus

8.3.1 Non-Compliant Submissions

Five percentage points will be deducted from the final project mark for each submission
not meeting the submission requirements. This is independent of the evaluation of the
deliverables submitted. A submission is non-compliant in the following circumstances:

• The release is not correctly published on GitHub (Section 7.3).
• The executables, built by CMake running on Windows, cannot be run for any reason.

For the final release, any broken executable will result in a rating of Unacceptable
on the rows of the rubric where that executable is assessed. Using CMake with the
CMakeLists.txt file that is provided with the demo game will ensure that your game
and test executables include all of their required dependencies.

• One or more commits are not linked to a group member’s GitHub profile. The penalty
will only be applied to the group member with unlinked commits.

• Releases are tagged on different branches.
• Any commit, on the master or main branch, leading up to a release (including the

release commit itself) has more than 100 inserted lines of source and test code when
compared to the previous commit on the master/main branch. The commits that
will be analysed are those made directly to main/master and those merged into
main/master. Merge commits, themselves, will be excluded from this analysis. The
number of insertions between two commits can be seen using:
git diff --shortstat <earlier-commit-hash> <later-commit-hash>.
The penalty will only be applied to the group member with the too large commit.

• A commit that is on a branch leading to a tagged release is not an atomic commit. In
other words, the commit does not build. The commits leading up to a release will
be randomly sampled and built using CMake. If the build fails then the penalty will
apply to the committer.

• The release assets file is not a zip file but instead is some other archive format.
• The game’s source code is duplicated (partly or completely) within the test-source-code

directory.
• The splash screen is missing, incorrect, or incomplete.
• For the second submission only: basic movement tests are not provided for each game

object that has been implemented.
Note, the non-compliance penalty for any given submission is five percentage points even
if there are multiple issues with the submission.

8.3.2 Late Submissions

Five percentage points will be deducted from the final mark for each interim submission
that is submitted late. If the second submission is not received by 16:30 on the day of
the deadline then, in addition to a five percentage point penalty, it will be taken that no
submission was attempted and the highest achievable rating for the Functionality category
will be Acceptable. For the two interim submissions, if there is a compliance issue as well
as a late submission, the penalty will still be capped at five percentage points.
The School’s Late Submission Penalty Policy will be strictly applied to the final deadline.
The policy must be read and understood by the student. For the final submission, if there
is a compliance issue as well as a late submission, then the two penalties will be added.

9



8.3.3 Early Hand-In

Groups who submit all of their project deliverables by 17:00 on the day before the final
deadline, will enjoy a bonus of five percentage points, and a relaxed evening.

9 Plagiarism

Plagiarism detection software will be used to compare project submissions to one another
and to code available on the internet. All instances of plagiarism will be severely dealt with.
No two groups may have identical or overly similar deliverables.

10 Final Thoughts

It is critical that you apply a balanced effort to all aspects of the project and that you do
not fall into the common trap of over-focusing on coding, and functionality, and neglecting
other important activities such as design, critical analysis, testing and documentation. Re-
member that implementing additional functionality will in turn require more effort in all
other areas of the project. It is invariably better to produce a final product that is acceptable
in all respects, rather than a product that is excellent in only one respect and poor in all
others.

Good luck and have fun!

References
[1] Wikipedia. “Dig-Dug.” https://en.wikipedia.org/wiki/Dig_Dug, Last accessed:

August 2025.

Copyright SP Levitt, Wits School of Electrical and Information Engineering.
Version 6.00, 2025 (elen3009-project-2025.tex)

10

https://en.wikipedia.org/wiki/Dig_Dug


University of the Witwatersrand, Johannesburg
School of Electrical and Information Engineering
Software Development II

Unacceptable Poor Acceptable Good Excellent

extremely flawed problem 
understanding/specification/

domain model, key functionality 
and/or design choices not 

explained at all,
presentation of solution does not 

match implementation

poor problem understanding/ 
specification/domain model, key 

functionality and/or design choices hardly 
explained, fundamental misunderstandings 
of the implementation, class responsibilities 
inadequately described, blind acceptance 

of clearly defective functionality

adequate problem 
understanding/specification and

domain model,
class responsibilities described, some 

description of dynamic behaviour, 
minimal/flawed critique of the final solution 

in terms of functionality and/or design

good understanding/specification and 
domain model, class responsibilities well described, 
dynamic behaviour correctly depicted with sequence 
diagrams, reasonable critique of the final solution in 
terms of both functionality and design, good use of 

diagrams to communicate concepts

astute understanding, specification
 and domain model,

class responsibilities are well described and 
dynamic behaviour well illustrated with sequence 
diagrams, excellent critique of the final solution in 

terms of both functionality and design, 
consideration of the broader problem domain,  

excellent use of diagrams to communicate 
concepts

raylib-cpp not used,
implementation violates 

constraints, 
not object-oriented, no user-

defined classes, GitHub not used 
for version control and publishing 

releases

poorly chosen abstractions or many key 
abstractions missing, poorly designed class 

interfaces, inappropriate relationships 
between classes, patent violation of 

fundamental principles such as DRY, 
implementation more like C than C++

abstractions generally have 
acceptable/appropriate behaviour but 

some key ones may be missing, 
acceptable class interface design but 

implementation may not be well hidden,
mostly acceptable class relationships,

modern, idiomatic C++ mostly used

2 out of 4 : 1) well-modelled abstractions at all levels of 
granularity with good interfaces which hide information 
2) clean separation of presentation and logic layers 3) 

small classes and no long functions 4) good use of role 
modelling. No clearly wrong design decisions, modern, 

idiomatic C++ used
+ good technical reference manual

3 out of 4 : 1) well-modelled abstractions at 
suitable levels of granularity, and at all layers, with 

good interfaces which hide information 2) clean 
separation of presentation and logic layers 3) 

small, cohesive classes and no long functions 4) 
good use of role modelling. No clearly wrong 

design decisions, modern, idiomatic C++ used
+ good technical reference manual

executable does not run, game 
functionality is at the level of the 

first submission or less
game runs but has major functional flaws all basic functionality working acceptably all basic functionality working plus 3 minor features OR 

1 major feature and 1 minor feature
all basic functionality working plus 2 major 

features and 3 minor features

executable does not run, no 
genuine attempt at

 unit testing, doctest framework 
not used

insufficient testing - not meeting the 
requirement for Acceptable ; or very limited 

testing due to insufficient functionality 

automated test coverage of game logic is 
adequate and includes basic movement 
and collision testing for all  game objects, 
some important game logic is not tested

automated test coverage of game logic includes all 
classes/functions responsible for the movement and 

collision of game objects, fair test coverage of features 
implemented, testing is thorough and test code is of 

good quality (good test names, easily understandable 
code, etc.)

distinguished from Good  by one or more factors: 
comprehensive coverage of all functionality 

implemented; advanced use of testing framework, 
automated tests given for difficult-to-test 

functionality eg. involving randomness, gui 
interactions etc.

-20%
report deviates significantly from 

the Blue Book

-5%
report does not conform to the Blue Book, 
use of language, style and tone is poor, 
report structure is poor, report exceeds 

page limit

Notes: Bonus and Penalties:
All categories are equally weighted Non-compliant submissions: first: -5; second: -5; final: -5
If any category receives a rating of Unacceptable then both students' marks are capped at 40% Early hand-in: +5; Late final submission: within first hour: -5; before 16h30: -15

0%

PROJECT ASSESSMENT FORM V0.43

Automated Testing:
test executable and 
source code

Technical 
Communication:
project report

Problem 
Understanding, 
Solution and 
Evaluation:
project report

C++ Design and 
Implementation:
source code

Functionality: 
game executable


	Introduction
	Project Outcomes
	Constraints
	Game Mechanics
	Categorization of Features
	Basic Functionality
	Minor Feature Enhancements
	Major Feature Enhancements

	Project Submissions Overview
	First and Second Submission Deliverables
	Final Submission Deliverables

	Use of GitHub
	The Project Repo
	Git/GitHub Workflows
	Project Releases
	Release Tags
	Release Notes
	Release Assets - Required for the Final Release


	Assessment
	The Marking Rubric
	Teamwork Assessment
	Penalties and Bonus
	Non-Compliant Submissions
	Late Submissions
	Early Hand-In


	Plagiarism
	Final Thoughts

