
Design Advice

1 Class-Level Advice
Standalone versus Base Classes
Interfaces
Code Smells (Indicators of Poor Design)

Monolithic Class
Data Class

Abstractions at Different Levels

2 Architecture Advice
Layering
Protecting The Domain Layer

1 / 26



Design Advice and Code Smells

1 Class-Level Advice
Standalone versus Base Classes
Interfaces
Code Smells (Indicators of Poor Design)

Monolithic Class
Data Class

Abstractions at Different Levels

2 Architecture Advice

Standalone versus Base Classes 2 / 26



Be Clear About What Kind of Class You Are Writing

The design rules for standalone and base classes classes are very different, and client
code treats base classes very differently from standalone classes.

Decide what kind of class you need before you design it.

Standalone versus Base Classes 3 / 26



Standalone Classes

Standalone classes:
have a public destructor, copy constructor and assignment operator with value
semantics
have no virtual functions
are usually instantiated on the stack or as a directly held member of another class
(direct composition)
are not intended to be used as a base class

Standalone versus Base Classes 4 / 26



Base Classes

Base classes should:
establish interfaces which are as simple as possible while still effectively modelling
a role in the problem domain
have a destructor which is public and virtual
shield code from knowing about the actual type(s) being operated on, by being
used as:

reference parameters of functions
the type for instantiating smart pointers, or vectors of smart pointers

Standalone versus Base Classes 5 / 26



Design Advice and Code Smells

1 Class-Level Advice
Standalone versus Base Classes
Interfaces
Code Smells (Indicators of Poor Design)

Monolithic Class
Data Class

Abstractions at Different Levels

2 Architecture Advice

Interfaces 6 / 26



Pay Attention to Your Interfaces

“ The most important thing to get right is the interface. Everything else
can be fixed later. Get the interface wrong and you may never be allowed
to fix it.” — Sutter’s Law of Second Chances

“ Interfaces, like diamonds, are forever.”
Interfaces 7 / 26



Design Advice and Code Smells

1 Class-Level Advice
Standalone versus Base Classes
Interfaces
Code Smells (Indicators of Poor Design)

Monolithic Class
Data Class

Abstractions at Different Levels

2 Architecture Advice

Code Smells (Indicators of Poor Design) 8 / 26



Monolithic or Large Class

Catalog of Refactoring — Shvets
https://refactoring.guru/smells/large-class

Code Smells (Indicators of Poor Design) 9 / 26

https://refactoring.guru/smells/large-class


What are the different concerns that Flight deals with? Give the names of smaller,
more focused classes that you could extract from Flight.

class Flight {
public:

Flight(Aircraft plane,Place orig, Place dest);
unsigned int GetMaxSpeed() const;
void ScheduleTakeOff(const Time& time);
Time GetFlyingTime() const;
void AdjustFlightPath(Paths other);
void AddPassenger(const Person& p);
void RemovePassenger(const Person& p);
vector<Person> GetPassengerList() const;
Clearance SecurityCheckPassenger(const Person& p) const;
unsigned int EstimateNoInflightMeals() const;
void SetMealTypeAndNumber(MealType meal, unsigned int num);
Rands TotalMealCost() const;

};

Code Smells (Indicators of Poor Design) 10 / 26



Avoid Monolithic Classes, Prefer Minimal Classes

A minimal class is easier to comprehend and more likely to be used and reused in
a variety of situations
A minimal class embodies one concept at the right level of granularity. A
monolithic class is likely to embody several separate concepts and using one
implies understanding all of the others

Divide and conquer: small, focused classes are easier to write, get right, test
and use.

Code Smells (Indicators of Poor Design) 11 / 26



Beware the Data Class

Catalog of Refactoring — Shvets
https://refactoring.guru/smells/data-class

Lots of getter and setter methods but no real behaviour.
Code Smells (Indicators of Poor Design) 12 / 26

https://refactoring.guru/smells/data-class


Design Advice and Code Smells

1 Class-Level Advice
Standalone versus Base Classes
Interfaces
Code Smells (Indicators of Poor Design)

Monolithic Class
Data Class

Abstractions at Different Levels

2 Architecture Advice

Abstractions at Different Levels 13 / 26



Abstractions at Different Levels

Classes and their objects are the building blocks of an application
High-level abstractions build upon lower-level abstractions

Abstractions at Different Levels 14 / 26



Source: Object-Oriented Analysis and Design, 2nd ed., G. Booch, 1994

Abstractions at Different Levels 15 / 26


	Class-Level Advice
	Standalone versus Base Classes
	Interfaces
	Code Smells (Indicators of Poor Design)
	Abstractions at Different Levels

	Architecture Advice
	Layering
	Protecting The Domain Layer


