
Design Advice and Code Smells

1 Class-Level Advice
Monolithic Class
Data Class

2 Architecture Advice
Layering
Protecting The Domain Layer

Layering 16 / 26



Application Layers

PresentationDomainDataLayering — Fowler
https://www.martinfowler.com/bliki/PresentationDomainDataLayering.html

Layering 17 / 26

https://www.martinfowler.com/bliki/PresentationDomainDataLayering.html


Why Separate Layers?

Understandability, each layer has a coherent set of responsibilities, concerns are
separated
Substitutability, e.g. easy to substitute different front ends or data stores
Testability
Supports parts of the system changing at different rates
Team specialisation

Layering 18 / 26



Which Layer’s Code Is The Most Valuable?

The domain layer contains the business IP
Presentation and data access layers are typically built from, and use, standard
components and frameworks

The domain layer is special ⇒ isolate and protect this layer

Layering 19 / 26



Design Advice and Code Smells

1 Class-Level Advice
Monolithic Class
Data Class

2 Architecture Advice
Layering
Protecting The Domain Layer

Protecting The Domain Layer 20 / 26



Domain Layer Isolation and Protection

The domain layer should
make use of a ubiquitous language (this part of the system should reflect the
problem domain in a very literal way, so the mapping is obvious)
contain a clean, expressive domain model unpolluted by infrastructure concerns
have limited exposure to external components beyond the team’s control — these
represent risk if the components change (eg. Web API’s)

Protecting The Domain Layer 21 / 26



Domain Layer Isolation in Practice

“ “You don’t want the domain model to [directly] depend on anything that
talks to any kind of external system”” — Mathias Verraes

Isolation from the presentation layer happens by default if the dependencies are
right
Isolation from the data store, and other services, requires you to write your own
classes or interfaces which shield your domain from these external components (eg.
the data access layer)

Protecting The Domain Layer 22 / 26



News Site Domain

Protecting The Domain Layer 23 / 26



Isolation From The Data Store

NewsArticle
Repository

Client

Save(Article article)

Retrieve(ArticleID id)

Disk

The interface of the repository object is written in 
terms of the domain being modelled. The 
implementation translates from the technology used 
to access the data store to the context of the domain 
model.

The client communicates 
with the repository in 
terms of the domain 
model.

Protecting The Domain Layer 24 / 26



Isolation From the Data Store cont.

NewsArticle
Repository

Client

Save(Article article)

Retrieve(ArticleID id)

The interface of the repository object is written in 
terms of the domain being modelled. The 
implementation translates from the technology used 
to access the data store to the context of the domain 
model.

The client communicates 
with the repository in 
terms of the domain 
model.

Cloud

Protecting The Domain Layer 25 / 26



Using Third-Party Libraries Within The Domain Layer

Avoid re-inventing the wheel, use third-party libraries and classes which are
well-written, stable, tested, and maintained
Consequences

Tightly coupling the domain logic to code you do not own/control
Be wary of frameworks and libraries that force you to compromise your design

Use library classes as is if they represent genuinely useful abstractions
boost::scoped_ptr was the forerunner of unique_ptr

If necessary, wrap library classes (using composition) to make them meaningful for
the domain, and to expose only the methods that the domain requires

In a “shipping and delivery” domain create a DeliveryDate class which internally
uses boost::date_time in order to exclude delivery dates on weekends

Protecting The Domain Layer 26 / 26


	Class-Level Advice
	Standalone versus Base Classes
	Interfaces
	Code Smells (Indicators of Poor Design)
	Abstractions at Different Levels

	Architecture Advice
	Layering
	Protecting The Domain Layer




