
 1

Code Smells (Indicators of Poor Design)

Code Smell Reasoning Solution
Duplicated Code

This is fairly obvious –
identical code which is
repeated, often through copy
and paste.

Duplicated code increases the size
of the overall code base. Changes
to one copy need to be applied to
all the other copies – this is a
maintenance burden.

Create a function which captures
the behaviour of the duplicate code.
Ensure that this function is called
whenever this behaviour is needed.
Follow the DRY principle.

Long Function

Long functions stick out
because they are substantially
longer than other functions in
the code base. Of course, if
all your functions are long
you have more serious
problems.

Long functions are difficult to
understand, test and debug.

Split the function up using smaller,
possibly private helper functions.
Consider whether some of the
behaviour encapsulated in the
function actually belongs in other
classes.

Monolithic or Large Class

Classes which have an
extraordinary number of
functions and data members,
or a number of very long
functions (see Long
Function). Classes with
diverse responsibilities.

A monolithic class is likely to
embody several distinct concepts.
This makes the class difficult to
understand and dilutes
encapsulation. Monolithic classes
are harder to make correct and
error-safe because they tackle
multiple responsibilities.

Divide and conquer – identify the
different concepts captured within
the monolithic class and pull
related behaviours into their own
classes.

Data Class

Data classes offer lots of
getter and setter functions but
no real behaviour. Their
behaviour is out there
somewhere, scattered among
the rest of the code.

The presence of data classes often
indicates a procedural approach to
the design. Classes are merely
used to package data together and
do not offer fully-fledged
abstractions. This forces clients to
define the behaviour (see
Duplicated Code). Clients are
tightly coupled to the
implementation details as there is
little encapsulation.

Identify sites where clients are
providing behaviour that actually
belongs in the data class. Move
these behaviours into the class.

 2

Inappropriate Intimacy

Classes are able to directly
access and modify each
others’ private parts, often
through getter/setter
functions.

Private data is the best means that
a class can use to preserve its
invariants. However, if this data is
exposed through the class’s
interface there is no guarantee that
the invariants can be preserved.
Additionally, clients become
coupled to the internal
representation.

Where possible remove
implementation-revealing parts of a
class’s interface. Encapsulate
appropriate behaviour within the
class rather than providing getter
functions, and follow the “Tell, don’t
ask” principle.

Switching Based On
Type Codes

Classes (usually within an
inheritance hierarchy)
store a specific code
indicating what type they
are. Switch statements or
control logic is used to
determine the course of
action based on the type
code.

In object-oriented programming,
the type of an object is
represented by the way it behaves,
not by its state. Having such
switch statements in the code base
introduces a maintenance burden.
Every time a new class is added to
the hierarchy the switch
statements or control logic will
need to be updated to handle the
new type.

Polymorphism provides an elegant,
object-oriented solution to this
problem.
Implement type-based decisions by
using virtual functions and dynamic
binding, not with conditional control
structures.

Refused Bequest

Derived classes inherit the
member functions and data
members of their parents.
Some of these classes do
not want what they have
been given. This is
especially problematic if
the derived class is
refusing to fulfil the
contract of the base class.

Inheritance should model an is-
substitutable-for relationship.
Having an interface that is not a
true reflection of what a derived
class does, or does not make sense
for a derived class, results in
confusion and makes the code
harder to use and understand.

Re-think the inheritance hierarchy -
push inappropriate member functions
and data members out of the base
class and into derived classes.
Alternatively, replace inheritance
with composition – a containment
relationship.

Public Inheritance Solely
For Code Reuse

No code is written to the
interface of the base class
of an inheritance
hierarchy. There are no
virtual functions in the
base class or the base class
has virtual functions which
are never overridden.

Using inheritance so that a
derived class can reuse base class
code to implement itself results in
brittle, unnatural and inefficient
designs. Brittle, because
inheritance is a highly coupled
relationship and so it becomes
difficult to change the base class
implementation without breaking
derived classes. Unnatural,
because implementation details in
the base class are often not
common to all derived classes;
and inefficient, because clients
end up having to include excess
header files.

Implemented-in-terms-of
relationships can be entirely proper
but should be modelled using
composition, or, possibly, private
inheritance.

Use public inheritance to model roles
in the system and the objects
substitutable for these roles
(see the Liskov Substitution
Principle).

