
ELECTRICAL AND INFORMATION ENGINEERING
University of the Witwatersrand, Johannesburg
Software Development II – Laboratory 0*

Development Environment and Tools Setup

1 Introduction

The goal of this laboratory is to correctly set up both your development environment, and
the tools, that are required for this course. It is best to install the software in the order given
below. Once everything has been installed, you will check that it has been done correctly
by compiling and running a simple program. For all subsequent labs, we will assume that
you have set up your environment correctly.
These instructions are written for a Windows 64-bit system. However, all the required
software is cross-platform and can run on macOS and Linux, but there will be some config-
uration differences.
The main laboratory outcomes are:

1. You have correctly installed the Visual Studio Code IDE along with the GCC compiler
and a number of other tools that we will be using during the course.

2. You can successfully compile and build the C++ “hello world” program.
There is no submission for this lab and it does not count for marks.

2 Software Installation

2.1 MSYS2 GCC compiler suite

In order to run our C++ code we need a compiler. We will be using the GCC (GNU Com-
piler Collection) compiler suite which is a widely used, free, and open-source collection
of compilers and other tools. These tools were originally developed for Unix systems and
have been ported to Windows through MinGW and MSYS2.
To install the GCC compiler on Windows† download the MSYS2 installer. Run the installer
and accept the default settings. A terminal will automatically open once the installation
is complete. In this terminal, install the MinGW-w64 toolchain by running the following
command:
pacman -S --needed base-devel mingw-w64-ucrt-x86_64-toolchain

*As is typical in programming languages, the labs use a 0-based index.
†If you are running macOS, refer to the installation instructions for Clang.

1

https://www.msys2.org/
https://code.visualstudio.com/docs/cpp/config-clang-mac

Accept the default number of packages in the toolchain group by pressing enter and then
press Y when prompted whether to proceed with the installation. Note, this is relatively
large installation and it can fail because of internet timeouts. If you see any errors or
warnings during the installation, then uninstall MSYS2 using Windows’s Add or remove
programs and start again.
Lastly, and very importantly, it is necessary to add the path of your MinGW-w64 bin folder
to the Windows PATH environment variable using the following steps:

1. In the Windows search bar, type Settings to open your Windows Settings.
2. Search for Edit environment variables for your account.
3. In your User variables, select the Path variable and then select Edit.
4. Select New and add the MinGW-w64 destination folder you recorded during the in-

stallation process to the list. If you used the default settings above, then this will be
the path: C:\msys64\ucrt64\bin

5. Select OK, and then select OK again in the Environment Variables window to update
the PATH environment variable. You have to reopen any console windows for the
updated PATH environment variable to be available.

After working through the above steps, it is important to check your MinGW installation.
You can open a command prompt by typing and then cmd. When checking the versions
of the MinGW-w64 tools, you should see the following versions (or later):
C:\>gcc --version
gcc (Rev5, Built by MSYS2 project) 15.1.0

C:\>g++ --version
g++ (Rev5, Built by MSYS2 project) 15.1.0

C:\>gdb --version
GNU gdb (GDB) 16.3

gcc is the C compiler; g++ is the C++ compiler; gdb is the debugger.

2.1.1 Handling Errors

If you receive an error message like:
'gcc' is not recognized as an internal or external command,
operable program or batch file.

then this means that the Windows PATH variable has not been correctly modified — refer
to the steps given above for setting the PATH.
If the version commands work but you do not see the correct version then this means that
you have more than one version of the MinGW compiler installed (perhaps via Code::Blocks
or a previous installation of MSYS2). The best way to fix this is to uninstall any other
instances of MinGW that you are not using. To find other versions that you have installed
you can use Everything. Everything is a useful Windows application which indexes your
hard drive allowing you to easily and quickly find files and directories. Download the 64-
bit installer and run it. Accept the defaults, but actively decide whether you wish to run
Everything at system startup (by ticking/unticking the relevant checkbox).
Wait a minute or two while Everything runs and indexes your drive, and then search for
g++.exe. If it finds more than one instance of this file then you have multiple installations

2

https://www.voidtools.com/downloads/

on your computer. From each instance’s path you should be able to tell which application
installed it. Use Windows’s Add or remove programs to remove installations which you do
not need.
It is essential that you have the correct MinGW version installed. Although, you may be
able to compile and run the “hello world” program in this lab, you will have problems later
on with an incorrect version.

2.2 Visual Studio Code

It is now time to download and install Visual Studio Code, aka VS Code. This is an ex-
tremely popular (50 million monthly active users) and versatile integrated development
environment (IDE) which can be used to write code in C++, JavaScript, Python, and many
other languages as well as documentation in LATEX and Markdown. Run the installer and
accept the defaults. You can check the box for adding an icon to the desktop.

2.3 Git Bash

We will be using Git (a version control system) and GitHub (a website which hosts Git
repositories) extensively throughout the course. Git/GitHub form a powerful combination
for collaborating with others on a codebase, and we will be discussing this in much more
detail.
Git Bash is the official command-line Git client for Windows. There are many different Git
clients, including graphical ones. In this course, we will focus on using Git via the command
line as it helps to promote a solid understanding of what Git is doing. Additionally, it is
worth noting that some Git functionality is simply not available in third-party clients.
Download and install Git Bash for Windows. Accept the defaults offered by the installer,
except for the options shown in the Figure 1 and Figure 2.

Figure 1: Select VS Code as the default editor

Now check that Git has been installed correctly by opening up the command prompt and
checking that the version matches that below, or is more recent:

3

https://code.visualstudio.com/
https://git-scm.com/downloads/win

Figure 2: Use “main” for the default branch name (as is done on GitHub)

C:\>git --version
git version 2.50.1.windows.1

There is still some configuration to do before you can actually use Git. This will be done in
Lab 1.

2.4 CMake

CMake is a tool that is used for automating the installation, testing and packaging of C++
applications. We will be using this to automate the compilation, linking and building of
the course project and some of the labs. It will be discussed in further detail later in the
course. For now just download and install CMake. Accept the defaults when installing.
Check that you have correctly installed CMake by opening a new command prompt and
checking the version:
C:\>cmake --version
cmake version 4.0.3

2.5 Doxygen

Lastly, you need to download and install Doxygen. Download the 64-bit system installer.
If you are using Microsoft’s Edge browser, it incorrectly marks the Doxygen executable as
an unsafe file. You need to explicitly choose to keep the file when downloading it. Select
the ellipses in the Downloads dropdown and choose Keep and then Show more, followed by
Keep Anyway.
Accept the defaults as you perform the installation. Doxygen is used for extracting source
code comments as program documentation. We will use this for documenting the course
project. Confirm that you have the version shown below (or a later version):

4

https://cmake.org/download/#latest
https://www.doxygen.nl/download.html

C:\>doxygen --version
1.14.0 (cbe58f6237b2238c9af7f51c6b7afb8bbf52c866)

2.6 VS Code Extensions

VS Code achieves it versatility through the multitude of extensions that have been de-
veloped which can tailor the IDE to support specific languages, libraries, and tools.

2.6.1 The SD2 Profile

A collection of useful extensions and settings for this course are available as a VS Code
profile. The profile file can be downloaded from the Laboratory 0 page on the course
website. You can then import the profile by clicking on File>Preferences>Profiles and then
the down arrow next to New Profile, select Import Profile..., Select File..., and find the file
(see this video). When prompted, you will need to Trust Publishers & Install in order to
install the extensions.
Now you can change your default profile to the SD2 profile one by selecting it from the
profile list. You can also make it the default for new windows.
Here is a brief description of each of the extensions that are contained in the SD2 profile:
C/C++

Provides C and C++ language support, including IntelliSense, debugging, and code
browsing.

C/C++ Include Guard
Automatically adds include guards to header files to prevent multiple inclusion issues.
Try it out by creating a new “.h” file.

CMake Tools
Adds support for CMake projects, enabling configuration, build, and debug directly
from VS Code.

Code Spell Checker
Provides spell checking for code and comments, helping identify and correct spelling
mistakes.

Doxygen Documentation Generator
Helps create documentation comments for C++ code following Doxygen standards.
You will use this when documenting the code for the course project.

Git Graph
Visualizes Git repository history with a graphical interface, showing branches, com-
mits and merges. This is a useful complement to the command-line interface that we
will be using.

indent-rainbow
Colourizes indentation levels in code with different colours, making code structure
easier to follow.

5

https://www.youtube.com/watch?v=CB3iNZMFuSA&t=1m52s

Material Icon Theme
Provides file icons based on Google’s Material Design, making it easy to identify dif-
ferent file types in the project explorer.

Terminal Here
Allows a terminal to be opened at the current file’s location using a keyboard shortcut.
Test it by opening any file and typing Ctrl t h (hold down the Ctrl key and then
press t followed by h). The VS Code integrated terminal will be opened in the
directory which contains the file being viewed.

UMLet
Enables creation and editing of UML diagrams directly within VS Code, which will
be useful for documenting the software design of the project.

Do not install any additional C++ extensions beyond those provided in this profile. Ex-
tensions such as Code Runner conflict with the recommended setup and cause issues. If
you have previously installed any C++ related extensions, please disable or uninstall them
before proceeding with the labs.

2.6.2 VS Code Personalization

The SD2 profile makes use of a theme which I like (Tomorrow Night Blue) but you may
prefer something else. To preview and install themes, use the command palette (Ctrl shift
p) and type: themes. Select Browse Color Themes in Marketplace to explore the options.
In addition to the profile extensions, you may want to personalize your VS Code experience
with some fun extensions. Here are two suggestions:

1. Power Mode adds particle effects and animations when you type, possibly making
coding more exciting (or more annoying).

2. VSCode Pets adds a virtual pet (cat, dog, snake, etc.) to your editor that keeps you
company while you code.

Feel free to explore the VS Code Marketplace for more extensions to make your coding
environment enjoyable.

3 Testing your Setup: Hello World

3.1 Creating and Running the Application

Having completed all the installations, it is time to test your setup. Follow the instructions
for creating and running a hello world app.

Figure 3: Pre-launch task error

6

https://marketplace.visualstudio.com/items?itemName=hoovercj.vscode-power-mode
https://marketplace.visualstudio.com/items?itemName=tonybaloney.vscode-pets
https://code.visualstudio.com/docs/cpp/config-mingw#_create-a-hello-world-app

Note, if you receive the error shown in Figure 3 when trying to run the “hello world” pro-
gram, and you have made certain that you have the correct versions of the tools installed,
then try the following fixes in the order given.

1. Delete the .vscode folder and re-run the programmaking sure that you select g++.exe
and not gcc.exe.

2. Move the path to the MinGW-w64 bin folder from the User variables section (as de-
scribed above) to the top of the System variables section. Do this by pressing and
searching for Edit the system environment variables. You will then be able to modify
the respective PATH variables.

3. Remove and re-install MSYS2 and the GCC toolchain, in case it did not download
properly.

3.2 The Debugger

After having confirmed that the code runs, work through the section on how to use the
debugger, up to and including the section entitled: “Set a watch”. There is no need to
continue beyond this section.

3.3 The Integrated Terminal

To conclude this lab it is worth noting that the SD2 profile sets the Git Bash shell as the
default for the integrated terminal. “Integrated” refers to the fact that the terminal is
directly accessible from within VS Code, unlike the command prompt which is external to
VS Code. To toggle the visibility of the integrated terminal, type Ctrl ‵ .
Now try running your “hello world” program from the terminal. Open a terminal where
the EXE file is located by viewing the helloworld.cpp file in the editor and typing Ctrl t
h . Then type: ./h and press tab to autocomplete the filename to: ./helloworld.exe.
Lastly, press enter to run the executable and see the output.

4 Familiarizing Yourself with the Tools

4.1 VS Code

In order to familiarize yourself with VS Code’s extensive functionality it is worth watching
the following two short videos.

1. Getting Started
2. Productivity Tips

As you will have seen, keyboard shortcuts, are prevalent throughout VS Code and these can
greatly increase productivity. Take the time during the course to learn some of the ones
related to the basic use of the editor.

4.2 Git Bash

We will use this terminal to execute our Git commands. It can also be used to navigate
the directory structure, manipulate files, and so on. Review the basic commands that are

7

https://code.visualstudio.com/docs/cpp/config-mingw#_debug-helloworldcpp
https://code.visualstudio.com/docs/cpp/config-mingw#_debug-helloworldcpp
https://code.visualstudio.com/docs/introvideos/basics
https://code.visualstudio.com/docs/introvideos/productivity
https://code.visualstudio.com/shortcuts/keyboard-shortcuts-windows.pdf
https://www.git-tower.com/learn/git/ebook/en/command-line/appendix/command-line-101

available to you.

Copyright SP Levitt, Wits School of Electrical and Information Engineering.
Version 2.00, 2025 (elen3009-lab0.tex)

8

	Introduction
	Software Installation
	MSYS2 GCC compiler suite
	Handling Errors

	Visual Studio Code
	Git Bash
	CMake
	Doxygen
	VS Code Extensions
	The SD2 Profile
	VS Code Personalization

	Testing your Setup: Hello World
	Creating and Running the Application
	The Debugger
	The Integrated Terminal

	Familiarizing Yourself with the Tools
	VS Code
	Git Bash

